
Identity Theft
Attacks on Modern SSO Systems



$ whoami
● Tweets - @kelbyludwig 

● Blogs - https://kel.bz

● I do AppSec @ Duo

● Dabbles in cryptography, math, 

security engineering 



Agenda
Goal: Cover new classes of attacks on single sign-on and SAML

1. SAML at a high-level

2. New vulnerabilities affecting SAML and SSO systems

3. Exploiting instances of these vulnerabilities

4. Mitigation and Conclusion



SAML and SSO



Single Sign On
● Authenticate once; Get access to multiple applications.
● UX improvement on N-passwords for N-applications.



SSO: Cast of Characters

Identity 
Provider:

The service 
where you 

authenticate; IdP

User Agent:

Your web 
browser; The 

message passer

Service 
Provider:

The service you 
want to access;  

SP



Example SSO Workflow

Once 
authenticated IdP 
passes a message 
through browser

Your browser 
takes this 

message and 
passes it to the 

SP

SP validates 
the message 

and then 
authNs you to 
their service



SAML
● SAML: Security Assertion Markup Language

● SAML 1.0 defined in 2002, SAML 2.0 defined in 2005

● A common language and workflow between systems that 

want to provide SSO

● Includes other standards that provide security controls 

which prevent an untrusted message passer from 

tampering with messages



Simplified SAML Document
<Response Destination="serviceprovider.com">
  <Assertion ID="thing_to_sign">
    <Subject>
      <NameID>kelbyludwig</NameID>
    </Subject>
    <AttributeStatement>
      <Attribute Name="role">

     <AttributeValue>admins</AttributeValue>
   </Attribute>
 </AttributeStatement>

  </Assertion>
  <Signature><!-- Lots of things! --></Signature>



Key Elements: Subject and NameID
<Response Destination="serviceprovider.com">
  <Assertion ID="thing_to_sign">
    <Subject>
      <NameID>kelbyludwig</NameID>
    </Subject>
    <AttributeStatement>
      <Attribute Name="role">

     <AttributeValue>admins</AttributeValue>
   </Attribute>
 </AttributeStatement>

  </Assertion>
  <Signature><!-- Lots of things! --></Signature>



Key Elements: Attributes 
<Response Destination="serviceprovider.com">
  <Assertion ID="thing_to_sign">
    <Subject>
      <NameID>kelbyludwig</NameID>
    </Subject>
    <AttributeStatement>
      <Attribute Name="role">

     <AttributeValue>admins</AttributeValue>
   </Attribute>
 </AttributeStatement>

  </Assertion>
  <Signature><!-- Lots of things! --></Signature>



Key Elements: Signature
<Response Destination="serviceprovider.com">
  <Assertion ID="thing_to_sign">
    <Subject>
      <NameID>kelbyludwig</NameID>
    </Subject>
    <AttributeStatement>
      <Attribute Name="role">

     <AttributeValue>admins</AttributeValue>
   </Attribute>
 </AttributeStatement>

  </Assertion>
  <Signature><!-- Lots of things! --></Signature>



XMLDSig



Simplified Signature Element
<Assertion ID="thing_to_sign">[...]</Assertion>
<Signature Id="signature_id">
  <SignedInfo>
    <CanonicalizationMethod Alg="xml-c14n11"/>
    <SignatureMethod Algorithm="rsa-sha256"/>
    <Reference URI="thing_to_sign">
      <Transforms>
        <Transform Algorithm="xmldsig#base64"/>
      </Transforms>
      <DigestMethod Algorithm="sha1"/>
     <DigestValue>eW8=</DigestValue>
    </Reference></SignedInfo></Signature>[...]



XML Canonicalization (C14N)
● XML canonicalizes data prior to signature operations. 

● Logically equivalent documents have the same signature. 

● The following elements might be logically equivalent:

<Thing A="1" B="2">Hello!</Thing>

<Thing B="2" A="1">Hello!</Thing>

<Thing B="2" A="1">Hello!<!--comment!--></Thing>



XML Canonicalization (C14N)
● XML canonicalizes data prior to signature operations. 

● Logically equivalent documents have the same signature. 

● The following elements might be logically equivalent:

<Thing A="1" B="2">Hello!</Thing>

<Thing B="2" A="1">Hello!</Thing>

<Thing B="2" A="1">Hello!<!--comment!--></Thing>



XML Canonicalization (C14N)
● XML canonicalizes data prior to signature operations. 

● Logically equivalent documents have the same signature. 

● The following elements might be logically equivalent:

<Thing A="1" B="2">Hello!</Thing>

<Thing B="2" A="1">Hello!</Thing>

<Thing B="2" A="1">Hello!<!--comment!--></Thing>



XML C14N Algorithms

"Implementations are REQUIRED to be capable of producing 
canonical XML excluding all comments that may have 

appeared in the input document or document subset. Support 
for canonical XML with comments is RECOMMENDED."

https://www.w3.org/TR/2008/REC-xml-c14n11-20080502/#DataModel

https://www.w3.org/TR/2008/REC-xml-c14n11-20080502/#DataModel


SAML Library APIs



SAML APIs
● SAML defines "language" to convey data. What you do with 

the data is up to implementers
● APIs often provide non-canonical doc to users after verification.

saml_response = init_saml_auth(http_request)
saml_response.process_response()
errors = saml_response.get_errors()
if len(errors) == 0:
  user_id = saml_response.get_nameid()
  authenticate(user_id)
else:
  # user is not authenticated



SAML APIs
● SAML defines "language" to convey data. What you do with 

the data is up to implementers
● APIs often provide non-canonical doc to users after verification.

saml_response = init_saml_auth(http_request)
saml_response.process_response()
errors = saml_response.get_errors()
if len(errors) == 0:
  user_id = saml_response.get_nameid()
  authenticate(user_id)
else:
  # user is not authenticated



SAML APIs
● SAML defines "language" to convey data. What you do with 

the data is up to implementers
● APIs often provide non-canonical doc to users after verification.

saml_response = init_saml_auth(http_request)
saml_response.process_response()
errors = saml_response.get_errors()
if len(errors) == 0:
  user_id = saml_response.get_nameid()
  authenticate(user_id)
else:
  # user is not authenticated



XML APIs: Text Extraction
● SAML APIs need to process XML data

● In order to get e.g. the username we need to extract the 
inner text of a NameID

from defusedxml.lxml import fromstring
payload = "<NameID>kelbyludwig</NameID>"
data = fromstring(payload)
return data.text



XML APIs: Text Extraction
● SAML APIs need to process XML data

● In order to get e.g. the username we need to extract the 
inner text of a NameID

from defusedxml.lxml import fromstring
payload = "<NameID>kelbyludwig</NameID>"
data = fromstring(payload)
return data.text



XML APIs: Text Extraction
● SAML APIs need to process XML data

● In order to get e.g. the username we need to extract the 
inner text of a NameID

from defusedxml.lxml import fromstring
payload = "<NameID>kelbyludwig</NameID>"
data = fromstring(payload)
return data.text



XML APIs: Text Extraction
● SAML APIs need to process XML data

● In order to get e.g. the username we need to extract the 
inner text of a NameID

from defusedxml.lxml import fromstring
payload = "<NameID>kelbyludwig</NameID>"
data = fromstring(payload)
return data.text
#=> kelbyludwig



XML APIs: Text Extraction
● SAML APIs need to process XML data

● In order to get e.g. the username we need to extract the 
inner text of a NameID

from defusedxml.lxml import fromstring
payload = "<NameID>kelby<!---->ludwig</NameID>"
data = fromstring(payload)
return data.text



XML APIs: Text Extraction
● SAML APIs need to process XML data

● In order to get e.g. the username we need to extract the 
inner text of a NameID

from defusedxml.lxml import fromstring
payload = "<NameID>kelby<!---->ludwig</NameID>"
data = fromstring(payload)
return data.text
#=> kelby



Why? Trees, probably.
<NameID>kelbyludwig</NameID> may be represented as:

ElementNode: NameID
|_ TextNode: "kelbyludwig"

<NameID>kelby<!---->ludwig</NameID> may be represented 
as:

ElementNode: NameID
|_ TextNode: "kelby"
|_ CommentNode: "comment!"
|_ TextNode: "ludwig"



Observations on Correctness
● Ruby’s REXML also exhibits this behavior in their .text 

method, but the behavior is documented in a example.

● Non-lxml python libraries like xml.etree have .text 
methods that wouldn’t be truncated

● Some libraries don’t provide a method like .text, so text 
extraction would be implemented by the user.

● In short: It’s arguably technically correct to do this, but 
it is not very intuitive.



Tampering with 
Signed Data



Putting it all together
● SAML documents…

○ Contain information about the authenticating user, within the inner text
○ Are often passed through a user’s browser from the IdP to the SP
○ Are signed to prevent tampering
○ Are canonicalized, in most cases excluding comments, prior to signing
○ Because of c14n, the addition of comments would not affect a document 

signature

● SAML/XML APIs
○ Have unintuitive and/or inconsistent behavior when extracting inner text
○ Provide the non-canonical document representation for post-signature 

processing 



The Attack

<NameID>
  admin@victim.com.evil.com
</NameID>



The Attack

<NameID>
  admin@victim.com<!--inserted by attacker-->.evil.com
</NameID>



The Attack

<NameID>
  admin@victim.com<!--inserted by attacker-->.evil.com
</NameID>

Doesn’t affect signature validity!

Truncated by the SP!



Using my credentials, I can 
pivot to other user accounts.



Finding Affected 
Systems and 
Disclosure



Finding Vulnerable Systems
● To detect presence of vulnerability, we often wrote or 

modified unit-tests that did roughly the following:

doc = "[...]<NameID>us<!---->er</NameID>[...]"
doc.verifySignature()
assert doc.nameID == "user"
# if assertion failed, NameID was possibly truncated

● If adding comments to those test cases caused a failure it 
was a strong indicator that the library was vulnerable.



Affected Libraries
● Initial research identified four affected open source libraries:

○ CVE-2017-11427 - OneLogin’s "python-saml"
○ CVE-2017-11428 - OneLogin’s "ruby-saml"
○ CVE-2017-11429 - Clever’s "saml2-js"
○ CVE-2017-11430 - "OmniAuth-SAML"

● Others who self-reported vulnerablity during disclosure:
○ CVE-2018-0489 - Shibboleth openSAML C++



Known Affected Products
● Duo Network Gateway (DNG) prior 

to 1.2.10.

● Multiple Pulse Secure products prior to 
8.3R6 and 9.0R2.

● Gitlab prior to 10.7.0

● Shibboleth prior to 2.6.1

● Symantec Advanced Secure Gateway 
and ProxySG remain affected according to 
their advisory.

https://support.symantec.com/en_US/article.SYMSA1450.html


Disclosure and Research Timeline
2017-12-11 Vulnerability identified during internal audit. 

RCA suggests others libraries could be affected.

2017-12-14 Analysis of SAML implementations identifies three            
other vendors impacted by same vulnerability class.

2017-12-18 CERT/CC contacted to coordinate disclosure.

2018-02-27 Coordinated public disclosure of all affected systems.



Exploitation of 
Service Providers



Threat Model
● Attacker has account on Identity Provider
● Attacker uses foothold to gain access to Service Providers
● Attacker uses the XML comment bug to pivot into Service 

Providers for different users

IdP Tampered 
document

SP



SP Exploitability: SAML Authorization Info
● Does the SAML Response convey role information?

● SAML defines the AttributeStatement element which can 
contain fairly generic attribute values.

● This can be used to define role information:

<AttributeStatement>
  <Attribute Name="Groups">
    <AttributeValue>Administrators (HR)</AttributeValue>
    <AttributeValue>Employees</AttributeValue>
  </Attribute>
</AttributeStatement>



SP Exploitability: User Identifiers
● SAML doesn’t dictate the format of a user identifier.

● What format of identifiers are used by the Service Provider?

Format Example Opportunities for 
Truncation?

Random 8f4de25fe6 Limited

Numeric user_104 Yes!

Email kelby@duo.com Registration-dependent

Usernames kelbz Registration-dependent



Case Study: Gitlab as an Exploitable SP
● Gitlab is an open source source code management service. 

● Prior to Gitlab CE 10.7.0, Gitlab’s SAML service provider 
implementation was affected by the comment truncation 
vulnerability.

● Using the comment truncation vulnerability to cause Gitlab 
to process one external ID as the target user’s external ID 
allows you to authN as that user

https://github.com/gitlabhq/gitlabhq/blob/master/CHANGELOG.md#1070-2018-04-22


Gitlab User Identifier Mapping for SAML

Gitlab UsersExternal Identifiers

Maps to

SAML Document

NameID

NameID?



Gitlab User Identifier Mapping for SAML

Gitlab UsersExternal Identifiers

Maps to

SAML Document

NameID

NameID?



Example Exploitation of Gitlab
Gitlab username:
victim

External identifier:
samlvictim

Goal: Truncate our external 
identifier to collide with the 
victim user’s external identifier. 
Not the Gitlab username.



Example Exploitation of Gitlab
A SAML document for the victim contains their external 
identity (samlvictim) and email address to keep it in 
sync with the IdP.



Example Exploitation of Gitlab
<NameID>samlvictim<!---->123</NameID>



IT Organizations

● Test your service providers 
for truncation vulnerabilities

● Ask service providers you 
rely on if they have tested 
themselves

SAML Developers

● Test your SAML code

● Reject non-c14n’d 
documents so further 
c14n is not necessary

● Reject SAML documents 
with comments

Remediation for...



Exploitation of 
Identity Providers



IdP Exploitability: 2FA

IdP Browser SP



IdP Exploitability: 2FA

IdP

2FA only 
here?

Bypass!

Browser SP



IdP Exploitability: 2FA

IdP Browser SP

2FA only 
here?

No bypass!



IdP Exploitability: 
User Registration

● Some IdPs provide 
self-registration portals 
for their IdP.

● A persistent 
registration link may 
linger in someone’s 
inbox forever! Free 
user-selected 
identities!



IdP Exploitability: User 
Profile Management

● Some IdPs also function as 
employee-facing directories.

● Employee profiles often can 
be updated by the employee.

● Mutable Identity: A term to 
describe Identity Providers 
who conflate user-controlled 
directory information with 
SSO identity.



Mutable Identity



Mutable Identity means 
users can influence their SSO 
identity.



Mutable Identity increases 
the impact of comment 
truncation vulnerabilities.



Mutable Identity: 
LastPass
● LastPass Enterprise has a SSO 

feature that has mutable 
identity.

● NameID can be tied to email 
address, which can be 
updated by a end user.

● Not a vulnerability on its 
own! But very risky when 
combined with vulnerable SPs.



Exploiting SPs With Mutable Identity
1. Identity a SP vulnerable to comment truncation vulnerability.

2. Update my LastPass Enterprise account email to target 
Duo’s CTO email: 
jono@duo.com.attacker.com

3. Re-authenticate to the SP, and insert a comment into your 
own NameID:

jono@duo.com<!---->.attacker.com

Truncated by the SP!



https://docs.google.com/file/d/1FfW2Kogt-PTuoE9_JWDgqc0MylSgx6fL/preview


https://docs.google.com/file/d/1aO4zmKS4S2nt_-wijWVRlGClAZ28FqUv/preview


https://docs.google.com/file/d/1qSFY_UQE2o51N0Cq2v78mfZlEx1UhlmF/preview


Mutable Identity could 
enable authN bypasses 
without a vulnerable SP



What if I could change my 
profile to match your profile?



What if I could change my 
profile to match your profile?

No truncation needed!



Mutable 
Identity: Okta

● Okta is an IdP that 
gives users a UI of all 
SPs they can access.

● Applications could be 
configured where 
user’s could 
completely control 
their SSO identity for 
an application.



Mutable Identity: Okta
● Okta allows you to "program" identities for SAML SPs.

● In this example, my account would have SAML assertions 
with NameID "kelby.ludwig"



Mutable 
Identity: Okta

● Okta also provides user 
profile information.

● The editable values of first 
name and last name are 
the same values used as 
part of the user field 
mapping for SAML 
assertions.



Mutable 
Identity: Okta

● Okta didn’t calculate 
identities on every 
authentication.

● However, Okta 
provides a 
self-service 
application 
provisioning portal for 
users



Identifying and Exploiting Mutable Identity
1. Update profile to match a target user

2. De-provision target application using self-service portal

3. Re-provision target application using self-service portal

4. Authenticate to target application

5. SAML document uses target user information?

Yes

Success!

No

GOTO 2



Remediation
● Self-remediation: confirm programmable user expressions 

are not using user-writable properties like first or last name. 

● Okta’s plan was to make these user profile attributes 
read-only by-default for new organizations (March 2018)
○ Existing organizations would not be changed.

● Still possible to opt-into mutable identities albeit but requires 
more work to configure to stumble across than before.



Conclusion



Takeaways

● Despite years of research, the 
complexity of SAML and related 
standards still makes systems 
built on them interesting targets

● We could only look at so many 
SAML implementations. Not all 
SAML implementations are 
directly accessible.



Thanks to...

● CERT/CC for coordinating 
disclosure with many vendors.

● Duo Labs researchers who 
hunted down vulnerable libraries.

● Affected vendors who provided 
patches to their users.



Thank you!
Twitter: @kelbyludwig
kludwig@duo.com
https://kel.bz


