
ARTist - A Novel Instrumentation Framework for

Reversing and Analyzing Android Apps and the

Middleware

Oliver Schranz - CISPA Helmholtz Center i.G.

July 30, 2018

1 Introduction

With the introduction of Android 5 Lollipop, the novel Android Runtime (ART)
superseded the Dalvik Virtual machine (DVM) as the new default runtime. One
of the major changes is the new on-device compiler suite called dex2oat that
provides ahead-of-time compilation of applications in contrast to the former
bytecode optimization (dex-opt) and just-in-time compilation. While ART fun-
damentally changes the the way applications are optimized and executed, not
much research has been done in this area. While there are some noteworthy ex-
ceptions [1][2], the area is still mostly uncharted. In this whitepaper, we explore
the possibility to utilize the new runtime and in particular the dex2oat compiler
to create a fully-featured instrumentation framework. The contribution of this
work is two-fold. First, we want to tighten this gap by providing information on
the compiler’s (undocumented) internal workings. Second, we introduce ARTist
(the Android RunTime instrumentation and security toolkit), a compiler-based
instrumentation solution for Android that does not depend on operating system
modifications and solely operates on the application layer. In contrast to ex-
isting instrumentation frameworks, it avoids invasive system-modifications and
is meant for researchers, developers and end users alike. ARTist comes with
a rich ecosystem including a toolchain to build own instrumentation modules,
an application wrapping ARTist with an easy-to-use GUI that can be installed
from an APK file, a framework for large-scale evaluation and example mod-
ules. Applications of ARTist range from app & system modding and analysis to
more security-related topics such as inline reference monitoring, taint tracking,
method hooking and library isolation, just to name a few.

1.1 Outline

In section 2, we provide the required background knowledge about Android,
ART and in particular dex2oat. Related work is discussed in 3 and our system’s

1

Figure 1: The lifetime of an APK (from Google I/O).

design and implementation are described in 4. In the end, we discuss the current
project state and future in section 5 and conclude the paper in 6.

2 Background

Here we provide some background information on core parts of Android that
we utilize in our work. Basic knowledge of Android is required.

2.1 App installation process

The way Android apps are built, delivered and installed includes numerous tools
and involved parties on the way from the developer to the end user. We will
have a brief look at each side to cover the basics of this process. Figure 1 gives
an overview on the process.

2.1.1 The developer side

Developers mostly write their app code in Java & Kotlin plus optionally some
pre-compiled native libraries (often written in C/C++). The Java and Kotlin
code is first transformed to .class files, yielding classical Java bytecode. However,
since Android used to run the specialized Dalvik Virtual Machine, the dx tool
transforms Java bytecode to Dalvik bytecode and saves it in as few classes.dex
files as possible. The resulting classes.dex files combined with pre-compiled
native libraries and other resources form the APK file that is typically distributed
through an app store.

2

2.1.2 The device side

Once downloaded to a device, installation happens in multiple steps. After
resources are extracted, the dex code is optimized in different ways depending
on the Android version. Pre-ART, the code was optimized using dex-to-dex
transformations to create optimized dex files (odex). With the introduction of
the new runtime, there are multiple possibilities now depending on the current
state of the device. In full compilation mode, the code is now ahead-of-time
compiled to native code that is stored in an ELF-based format called OAT. In
recent Android versions, this happens when the device is currently charged and
enough space is available. In other cases, however, a hybrid solution is applied
by either compiling just some parts of the code ahead-of-time or even skipping
the process as a whole and resorting back to interpretation and just-in-time
compilation. In the latter case, the runtime will analyze the execution of apps
and remember hot code paths so that the next time the device is deemed to be
ready (charging, enough space, etc), profile-guided compilation translates those
parts of the code that were found to be performance-critical. In general, the
complexity of the dex code optimization increased for each version aiming at
striking a balance between quick app start and execution times, delay at install
time due to the compilation process and the additional memory consumption.

2.2 The Runtime

The runtime components of ART take care of loading and executing the OAT
files compiled from bytecode of apps and system components. Pre-ART the
Zygote process preloaded a set of often used classes (Android framework, crypto
library, etc) into memory so that they are available in every fork, which is
essentially all apps and many system components. Post-ART, the dex2oat on-
device compiler compiles this set of classes into two files: boot.oat and boot.art.
The former is the straightforward compiled version of the preloaded classes,
the latter represents a heap of already allocated and preloaded objects to avoid
costly allocation of them in each single forked process later. Essentially, Zygote
provides a warmed-up but generic base process that is forked but not exec’d.
The way that applications are executed is that after the fork, the app’s compiled
OAT file is loaded into the memory as a shared library, which fits Android’s
design of having event-based callbacks instead of a dedicated main function is
apps.

2.3 dex2oat

ART’s dex2oat is a fully-featured compiler suite with multiple compilation back-
ends, code generators for all supported hardware platforms and a multitude of
different options to fine-tune compilation. It is responsible to compile not only
apps but also system components such as the systemserver (ActivityManagerService,
PackageManagerService, etc) and the boot.oat/boot.art images.

3

Figure 2: Compilation of an APK file using the Optimizing backend.

2.3.1 The compiler framework

While dex2oat provides the framework that loads and verifies the bytecode and
later writes the output, the actual compilation is left for one of the avail-
able backends. Lollipop introduced three backends: Quick, Optimizing and
Portable, each featuring distinct intermediate representations (IRs) and opti-
mization strategies.

2.3.2 Quick

Meant as a quick transition from Dalvik to ART, the Quick backend is a straight-
forward translation of the just-in-time compiler to the ahead-of-time paradigm.
While it was the default backend for apps in Lollipop, and for boot.oat/boot.art
in Lollipop and Marshmallow, it was eventually superseded by the Optimiz-
ing backend because its design was not suitable enough for state-of-the-art
optimizations[3].

2.3.3 Portable

Since its introduction, portable was never the default backend and was dropped
eventually from the code base altogether. The idea was to utilize LLVM and
its bitcode as a backend, but judging from the numerous blog posts, forum
threads and questions on the mailing list, it seems it never reached the required
robustness and performance goals.

2.3.4 Optimizing backend

In this work, we mainly focus on the Optimizing backend, which is the default
for apps since Marshmallow and for other Java-based system components since
Nougat. Figure 2 provides an overview of the whole process. After bytecode ver-
ification, the backend translates the code into its IR method control flow graps
(CFGs) where optimization passes are executed. Eventually, the optimized IR
CFGs are compiled to native code using the code generator for the architec-
ture the device is running on. Multi-threaded compilation is possible since

4

methods are (mostly) compiled independent of each other and optimizations
are designed as passes over the method CFGs. The intermediate representation
resembles a per-method CFG made from nodes similar to dex instructions in a
single static assignment form with explicitly computed def-use pairs. IR nodes
are object-oriented representations of dalvik instructions (e.g., invoke-virtual, If)
and additional meta instructions that are added to the code to uphold the Java
semantics. The reason for the latter category of nodes is that the programmer
writes her code in Java/Kotlin and hence expects the program to stick to the
Java semantics. With the translation to native code however, faulty code might
trigger native crashes such as segmentation violations instead of nicely-readable
NullPointerExceptions. Meta instructions fill this gap by explicitly adding the
java semantics into the code (e.g., check for array bounds, throw NullPointerEx-
ceptions by hand) to make it transparent to the developer whether the code runs
in the Dalvik VM or under ART. More information on the IR can be found in
my Master Thesis [4].

3 Related Work

While the fields is mostly uncharted, there are a few noteworthy works on
different topics related to the Android Runtime. We will have a look at an
excerpt that is close to our approach.

3.1 ART

In his Black Hat Asia whitepaper from 2015 Hiding behind ART [1], Paul Sabanal
explains how to make use of the new runtime and OAT file format to create mul-
tiple user-mode rootkits that hide their presence on the device. The whitepaper
provides a rich source of information about the OAT file format including its
headers, checksums and general structure. In Fuzzing Objects dART [5], Anestis
Bechtsoudis fuzz-tests the new compiler with automatically generated dex in-
put to search for vulnerabilities and gives further information on the internal
workings of dex2oat. Debuggability and the Quick backend are further detailed
in a slide deck[6] from Linaro.

The CCS 2016 paper TaintART: A Practical Multi-level Information-Flow
Tracking System for Android RunTime by Mingshen Sun et al describes how
to build a taint tracking system into the code generators of dex2oat, thereby
providing valuable information on how apps are compiled and executed. This
work is closest to our ARTist project because it also directly utilizes a fork of
dex2oat but adds own code on a different layer and does not generalize to a full
instrumentation framework.

3.2 Android Instrumentation

There are multiple systems providing instrumentation capabilities for develop-
ers and researchers seeking to analyze and modify Android apps and system

5

components, so we have a look at the most popular and common ones to be
able to compare them to ARTist later.

Xposed is the most well-known hooking framework for Android and the go-to
solution for modders1. Given root access and an unlocked bootloader, flashing
Xposed means overwriting the app process, which is the base process used by
Zygote, to be able to load hooks for arbitrary methods. At the time of this writ-
ing, there is a huge community (in particular on the popular XDA community)
behind the project and a long list of available modules created by modders.
Assuming a power user that is capable of rooting a device and flashing cus-
tomizations, then Xposed can also be used by end users without programming
experience by simply downloading and installing ready-made modules from an
online source.

Frida is a popular tool among analysts and reversers that allows for method
hooking in multiple targets including binaries, Android and iOS apps2. Frida
injects Chrome’s V8 engine into target processes so that hooks can be written in
Javascript. There are bindings available for multiple languages (e.g., python).
While it is widely popular in the security community, it is mostly geared towards
developers and researchers, and not suited for end users since Frida is mostly
controlled through an ADB connection and the Javascript bridge is too costly
for productive usage.

4 System Design

In this section, we discuss the various aspects of the ARTist projects, from the
underlying goals and design decisions to the ecosystem built around it.

4.1 Goals

The ARTist instrumentation framework is designed around three major goals
that are derived from what existing tools can and cannot provide. We will first
discuss the three goals and in the remainder of the design section explain why
and how ARTist is meeting them.

Deployability: Ease of deployment is key for adoption and a driving factor
for reaching a critical mass and form a community. Often, Android security
solutions create custom versions of the Android Open Source Project (AOSP),
which can provide better guarantees because they can utilize elevate privileges,
but they are hard to deploy since they either require manufacturers to implement
their solution in their own Androids or end users to flash those custom ROMs
to their devices. There is a whole line of research that focuses on application-
layer only solutions for Android that aim at striking a balance between achieving

1http://repo.xposed.info
2https://frida.re/

6

http://repo.xposed.info
https://frida.re/

Figure 3: Instrumentation of an application using ARTist.

results similar to system-centric solutions and still providing better deployability
and hence usability. On the one hand, for example, Xposed is very powerful
since it can hook arbitrary methods in apps and other system components,
however setting up Xposed is not an easy task for the laymen user. Frida on
the other hand can additionally hook native methods but is only deployable by
experts and not suitable for users at all.

Invasiveness: Existing approaches differ a lot in their invasiveness, i.e. the
amount to which they are changing the operating system and ecosystem to
achieve their goal. In general, the more invasive an approach the less robust
it might become since modified or replaced system components increase the
likelihood of incompatibilities or failed assumptions. Xposed, for example, is
more invasive than Frida since it replaces the app process, which is an integral
part of the Android runtime environment in contrast to the in-memory changes
inflicted by Frida. From a design perspective, it is preferable to achieve the
required functionality while being the least invasive.

Granularity: The instrumentation granularity is one of the subtle differences
between hooking and instrumentation frameworks. While most approaches fo-
cus on function hooking, a finer-grained solution aims at instructions instead of
functions. While, strictly speaking, one is not more powerful than the other, it
definitely makes a difference for developers since allowing for instrumentation
on a finer granularity makes it easier to implement subtle modifications. Xposed
and Frida both operate on function granularity, meaning it is possible to execute
code before, after and instead of a given function. Changing single instructions,
however, is not easily possible.

4.2 Overview

Figure 3 gives an overview of the instrumentation and re-compilation of an ap-
plication using ARTist. First, in a preprocessing phase an arbitrary Java/Kotlin
library is merged into the target code. This allows for shipping complex imple-
mentations such as reference monitors. Second, the modified target is then

7

provided as an input to our extended compiler. Third, after the translation
to IR CFGs and the applications of the backend’s own optimizations, ARTist
applies its instrumentations that are disguised as optimization passes over the
code. Since optimizations are expected to change the code, the compiler stays
oblivious to the fact that we are actually execution instrumentation passes at
this point. Fourth, after the resulting modified IR is compiled to native code
and written to an OAT file, we replace the OAT file originally created by the
system compiler at install time with our newly created version. From this mo-
ment, whenever the target is launched again, the new OAT file is loaded and
hence the instrumented version of the code is executed.

4.3 Deployment options

Given that we introduced deployability as one of the major design decisions
underlying our system, we will have a look at the two different deployment
mechanisms for ARTist and the different trade-offs they are making.

4.3.1 App based

The most common and least invasive deployment strategy for ARTist is the
app-based installation. It is based on the fact that our extended compiler con-
sists of a binary and some companion shared libraries, which we can simply ship
as assets within an Android application. Our app called ArtistGui essentially
wraps the binary ARTist compiler with an easy-to-use graphical user interface
to make it accessible and usable for developers and end users alike. It further
provides convenience functionality, such as a management utility for importing
and selectively applying instrumentation modules, keeping apps instrumented
upon app updates and removing instrumentations to restore the original, un-
changed functionality of a target. Reconsidering the process from Figure 3, this
approach is non-invasive since we ship our own compiler instead of replacing
the existing one and we only replace the compiled OAT file of an app. This
requires root but no further operating system changes or deeper modifications,
and hence constitutes a superior deployment model compared to existing so-
lutions. Currently, this approach is used to instrument applications installed
on the device. However, we are currently working on also instrumenting other
parts of the OS such as the systemserver or the boot.oat from within the app.

4.3.2 Custom ROM

In order to not only instrument apps but also system components, there is an
alternative deployment path that is more intrusive than the app-based strategy.
When compiling a custom ROM, replacing the ART project with our custom
ARTist version allows for compiling and hence instrumenting all system services
and boot.oat as well because it essentially replaces the system compiler. Due to
its increased invasiveness, this path is only eligible for system developers and

8

researchers, and eventually we want to make this possible without requiring to
compile a custom ROM.

4.4 Ecosystem

In its current state, ARTist is not only an extended version of the dex2oat
compiler but a full ecosystem revolving around compiler-based instrumentation
on Android. In this section, we will highlight some of the major parts and their
responsibility in the bigger picture.

4.4.1 ARTist

As depicted in figure 3, ARTist essentially is an extension to dex2oat’s optimiz-
ing backend that is capable of executing custom instrumentations disguised as
optimization passes. It dynamically loads developer-provided instrumentation
modules and applies them according to the given instrumentation filters and
policies. It consists of two repositories: art and artist. The art project provides
a specialization for each supported Android version that can interface with artist,
i.e. load instrumentation modules from provided command line arguments and
patche OAT checksums. The artist repository contains all the boilerplate code
for modules to interact with the method IR CFGs, such as our simple injection
framework where you can simply declare the position and the target function
of a new method call to be injected into the target. By getting access to the
whole method CFG, modules can operate on the instruction level instead of the
common method granularity of existing approaches.

4.4.2 Modules

Modules represent the actual instrumentation logic applied by ARTist. They
consist of three major parts:

1. The first part is an optional and developer-provided library that is merged
into the target during preprocessing. It is best practice to implement the
actual business logic here and connect it to the target later. Basically,
this library that we call Codelib is regular Android app project that can
be created using the default tools like Android Studio.

2. The second part consists of the instrumentation passes that will connect
the target to the merged library. These are written in C/C++ and utilize
the boilerplate code the artist repository provides to interact with the IR
code. It is compiled with our ARTist Module SDK that contains the
AOSP’s compiler toolchain and required headers and libraries from art
and artist. While it would be possible to use this for assembling new
functionality within existing target methods, it is recommended to use the
instrumentation passes only to glue together the target and your library
and keep all the complex functionality within the Codelib.

9

1 vector<shared ptr<const I n j e c t i o n >>
2 HTraceArtist : : P r o v i d e I n j e c t i o n s () const {
3 vector<shared ptr<const Parameter>> params ;
4
5 vector<shared ptr<const Target>> t a r g e t s ;
6 auto t a r g e t = make shared<const Target>(
7 Target : : GENERIC TARGET,
8 I n j e c t i o nT a r ge t : :METHOD END) ;
9 t a r g e t s . push back (t a r g e t) ;

10
11 auto i n j e c t i o n = make shared<const I n j e c t i o n >(
12 TraceCodeLib : :TRACELOG,
13 params ,
14 t a r g e t s) ;
15
16 vector<shared ptr<const I n j e c t i o n >> r e s u l t s ;
17 r e s u l t s . push back (i n j e c t i o n) ;
18 re turn r e s u l t s ;
19 }

Figure 4: The code of our trace module’s instrumentation pass.

3. The third part consists of some additional meta information, such as the
module maintainer, the compatibility version for the ARTist ecosystem,
title and description texts, and the module’s current version. All three
parts are assembled into a zip file that constitutes the final ARTist mod-
ule. It can be used by pushing it to a device where it is loaded by our
ARTist wrapper called ArtistGui (cf. below for details) and provided as
an argument to the wrapped ARTist compiler version.

Our module design covers a broad range of use cases, from lightweight static
analysis to complex in-depth instrumentations. To this end, we showcase some
example modules to provide an intuition what is possible with ARTist:

Method Tracing One of the most simple use cases is the trace module that
we use as our go-to pick for debugging and testing. All it does is injecting
method calls into (almost) all methods of a target where the invoked method
uses stack inspection to find and print the currently active method name to
the log. Figure 4 depicts the code of the described instrumentation pass. In
a nutshell, we utilize our injection framework to declaratively describe what
we want to inject (calls to the tracelog method in our Codelib) and where we
want the injected method invocation to be placed (at the end of each target
method). Combined with the filter definition in Figure 5 that tells ARTist to
apply this to all methods but the blacklisted ones and the (straightforward)
Codelib implementation of the tracelog method, this module generates logcat

10

1 // sk ip android support l i b u i methods
2 // s i n c e they b loa t up the log
3 unique ptr<F i l t e r > TraceModule : : getMethodFi l ter () const {
4 const vector<const s t r i ng> b l a c k L i s t D e f i n i t i o n = {
5 ” android . support . ” ,
6 } ;
7 re turn unique ptr<F i l t e r >(
8 new MethodNameBlacklist (b l a c k L i s t D e f i n i t i o n)) ;
9 }

Figure 5: The filter definition of the trace module that removes support library
methods from the instrumentation scope.

Figure 6: Logcat dump of the heise online app instrumented with the trace
module.

outputs similar to those in Figure 6. While it is not the most useful module we
created, it serves as an easy example for how fast one can get up and running
with ARTist.

Inline Reference Monitoring As a part of our initial ARTist EuroS&P
paper [7], we created a bare-bones implementation of an inline reference monitor
that showcases dynamic permission monitoring. The basic idea is to utilize a
permission mapping that lists permissions required for using public Android API
methods so that we can inject a call into our reference monitor implemented
in the Codelib immediately before such an API is invoked by the target. In
the Codelib, an arbitrary policy can then be enforced, e.g., ask the user for
confirmation or take a predefined policy, and abort the target if a violation is
detected. This approach can refine the dynamic permission system introduced
in Marshmallow by providing the user with more flexibility and also allowing to
restrain internet access and other permissions that are not supported for official
revocation.

Stetho One of the more interesting modules utilizes facebook’s open source
stetho library3 that is meant to be included in the debug builds of applications.
It connects the app to the chrome developer tools so that it can be debugged

3https://facebook.github.io/stetho/

11

https://facebook.github.io/stetho/

Figure 7: Stetho providing access to the reddit app’s on-device files and
databases.

like a web page, including traffic interception, file and database inspection and
modification, and invocation of Javascript in the app context. We created a
module that injects this into third-party apps from the play store, effectively
allowing to debug arbitrary applications. Figure 7 shows the chrome developer
tools connected to the reddit app.

Rootkit In his black hat asia talk [1], Paul Sabanal described how to create
rootkits by utilizing ART’s OAT files and their (almost) independence of the
input they are generated from. The same measures mentioned in the talk and
whitepaper, for example changing the list of active processes by modifying the
smali code and re-compiling it to dex bytecode, can be automated completely
using an ARTist module.

Traint Tracking Taint tracking is an information flow mechanism that marks
(taints) data within the target and observes the flow of information to detect
what other data is influenced by it. It is often used to detect multiple forms
of leakage of sensitive data. We outlined the prototype of an intra-app taint
tracking system for Android apps as a part of the initial ARTist paper [7]. Figure
8 describes how we define and instrument method-local and global sources and
sinks to be able to trace the flow of information across multiple app methods.
More in-depth information can be found in the paper.

12

Figure 8: Two simple methods, their corresponding (simplified) IR CFGs and
the annotated local and global sources and sinks that we use to track tainted
data.

Test Coverage ARTist can be utilized to compute coverage information when
testing arbitrary third-party apps. A simple module generates an identifier for
a basic block within a method, assigns it an ID that is injected into the code
as a constant, and adds a call to the Codelib into this block that provides the
corresponding ID as an argument. In the Codelib, we can now see a continuous
stream of IDs that we can map back to methods and their basic blocks. This is
particularly interesting when testing applications with automated test drivers.

4.4.3 ArtistGui

ArtistGui, the ARTist Graphical User Interface, is the wrapper application that
provides a layer of convenience around the ARTist version of dex2oat. It is used
as a management tool to import and use ARTist modules, start the instrumen-
tation process for applications, keep them instrumented across app updates (if
the user wishes so) or remove the instrumentation altogether. Figure 9 shows
three screenshots from the app that outline the workflow of instrumenting an
app. After modules have been imported from the file system, they are available
in the instrumentation dialog when tapping on an installed application in the
list. Eventually, the app will also automatically download the correct ARTist
version, display and load new modules, and keep everything updated.

4.4.4 Dexterous

The preprocessing shown in Figure 3 involves partially merging module Codelibs
into the target dex files. The reason is that while we can change the code of
existing methods within the compiler, we cannot add new ones since a lot of
required information such as method IDs refer back to the dex files’s internal
structures. Therefore, we need to add our own code to the target’s APK or
JAR file. However, this is not enough since Android resolves invoked methods
via a dex file-local method ID. But since our new methods are not called in

13

Figure 9: Left: ArtistGui navigation drawer. Center: Installed apps overview.
Right: App instrumentation dialog.

the original target, they are not in the method ID tables of the existing dex
files. This problem is solved by our Dexterous tool, which is an extension of
the DexMerger facility. In contrast to the original version that merges multiple
dex files together, we do not merge code but just the required headers including
type, class and method IDs. In a nutshell, we add all chosen Codelib methods
and types to the headers of all target dex files but do not merge their code.
The Codelibs are added as dedicated dex files to the target’s APK or JAR file.
Dexterous can be used as an Android library (as done in ArtistGui) or as a
standalone tool (as done for the custom ROM deployment path).

5 Project State and Future

Even though the project started in 2015 already, the open source instrumenta-
tion framework that we are using today is quite new and there is still a lot to be
done. We recently entered the beta phase with the release of a new documenta-
tion4, proper versioning for GitHub releases and installable module SDKs, and
we are looking forward to the feedback we will receive. The goal is to build
a community around the ARTist ecosystem with developers contributing mod-
ules and code for the core projects, as well as users giving feedback. We hope
that this whitepaper gives an introduction to what ARTist is capable of and we
are actively listening in our Gitter chat5 for questions and opinions. If you are
interested, feel free to drop us a message.

4https://artist.cispa.saarland/
5https://gitter.im/project-artist/Lobby

14

https://artist.cispa.saarland/
https://gitter.im/project-artist/Lobby

5.1 Future Work

There is a lot that can be done with ARTist. In this section, we focus on
four main aspects that can be improved in the foreseeable future. First and
foremost, we want to create further interesting modules that are also useful to
the bigger community. It seems that in particular the security community has
some special requirements, such as encrypted traffic inspection and interception,
that requires specialized tools like ARTist.

Second, assuming there will be more modules available from us and the
community, we want to have a module store where developers can upload their
own creations and users can inspect and download them straight into ArtistGui.
This has been done for Xposed and we envision a similar approach here.

Third, given that we are currently in beta state, the existing tools in our
ecosystem can still be improved a lot by, e.g., adding more automation. This
includes the build time where continuous integration and automated builds and
tests can increase the code quality, as well as automatically downloading and
updating ARTist versions and modules through ArtistGui.

Fourth, we want to (mostly) get rid of the system-centric deployment. While
this is a valuable option for seasoned system developers and researchers, the
toolchain required for building AOSP as a whole is very involved and the whole
process requires a lot of time to setup. At least for the typical ARTist use
cases here, i.e. instrumenting the systemserver and boot.oat/boot.art, it might
be possible to avoid this. Since those components are re-compiled on the device
anyway for each OTA upgrade, it should be possible to trigger this directly from
ArtistGui, therefore dropping the custom ROM requirement and strengthening
our app-based deployment path.

6 Conclusion

In conclusion, the novel Android Runtime provides really interesting opportu-
nities for (security) research and our instrumentation framework ARTist built
on top of the dex2oat on-device compiler is a straightforward way to get started
with the topic. It can be deployed to rooted stock ROMs by just installing the
ArtistGui app, allows for on-point instrumentations on the instruction level,
abstains from changing the OS and provides performance improvements over
similar approaches by shifting the instrumentation ahead-of-time. ARTist is
still a young community project, so if you want to get involved, this is the
perfect time to step up and get a say in the project.

7 Acknowledgements

Looking back, I want to acknowledge my team from CISPA that worked with
me on ARTist at different stages of the project. First, I want to acknowledge
all co-authors of the original EuroS&P paper: Michael Backes, Sven Bugiel,
Philipp von Styp-Rekowsky and Sebastian Weisgerber. Second, a shout out to

15

Jie Huang, the main author of the 2017 CCS app compartmentalization paper
[8] that heavily relies on ARTist and showcases this really interesting use case.
Third and finally, a big thank you to those still actively involved in pushing the
ARTist ecosystem further and developing new modules and features: Sebastian
Weisgerber, Parthipan Ramesh, Alexander Fink and Maximilian Jung.

References

[1] P. Sabanal, “Hiding behind ART,” Online: https://www.blackhat.com/
docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-wp.pdf, 2015.

[2] M. Sun, T. Wei, and J. C. Lui, “TaintART: A Practical Multi-level
Information-Flow Tracking System for Android RunTime,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. ACM, 2016.

[3] A. Authority, “Optimizing Compiler the evolution of ART,” Online: https:
//www.androidauthority.com/art-optimizing-compiler-605011/, 2015.

[4] O. Schranz, “Towards Compiler-Assisted Taint Tracking on the Android
Runtime,” Master’s thesis, Saarland University, December 2015. [Online].
Available: https://publications.cispa.saarland/1001/

[5] A. Bechtsoudis, “Fuzzing Objects d’ART: Digging Into the New Android
L Runtime Internals,” Online: http://census-labs.com/media/Fuzzing
Objects d ART hitbsecconf2015ams WP.pdf, 2015.

[6] Linaro, “HKG15-300: Art’s Quick Compiler: An unoffi-
cial overview ,” Online: https://de.slideshare.net/linaroorg/
hkg15300-arts-quick-compiler-an-unofficial-overview, 2015.

[7] M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and S. Weisgerber,
“ARTist: The Android Runtime Instrumentation and Security Toolkit,” in
European Symposium on Security and Privacy (EuroS&P). IEEE, 2017.

[8] J. Huang, O. Schranz, S. Bugiel, and M. Backes, “The ART of App Com-
partmentalization: Compiler-based Library Privilege Separation on Stock
Android,” in Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, ser. CCS ’17. ACM, 2017.

16

https://www.blackhat.com/docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-wp.pdf
https://www.blackhat.com/docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-wp.pdf
https://www.androidauthority.com/art-optimizing-compiler-605011/
https://www.androidauthority.com/art-optimizing-compiler-605011/
https://publications.cispa.saarland/1001/
http://census-labs.com/media/Fuzzing_Objects_d_ART_hitbsecconf2015ams_WP.pdf
http://census-labs.com/media/Fuzzing_Objects_d_ART_hitbsecconf2015ams_WP.pdf
https://de.slideshare.net/linaroorg/hkg15300-arts-quick-compiler-an-unofficial-overview
https://de.slideshare.net/linaroorg/hkg15300-arts-quick-compiler-an-unofficial-overview

	Introduction
	Outline

	Background
	App installation process
	The developer side
	The device side

	The Runtime
	dex2oat
	The compiler framework
	Quick
	Portable
	Optimizing backend

	Related Work
	ART
	Android Instrumentation

	System Design
	Goals
	Overview
	Deployment options
	App based
	Custom ROM

	Ecosystem
	ARTist
	Modules
	ArtistGui
	Dexterous

	Project State and Future
	Future Work

	Conclusion
	Acknowledgements
	Bibliography

