Google
The Problems and Promise of
WebAssembly

About Me

e Natalie Silvanovich AKA natashenka

e Project Zero member

e Previously did mobile security on
Android and BlackBerry

e Defensive-turned-offensive researcher

®

This page is having a problem loading

We tried to load this page for you a few times, but there is still a
problem with this site. We know you have better things to do than to
watch this page reload over and over again so try coming back to this
page later.

Try this

¢ Go to my homepage

¢ Open a new tab

What is WebAssembly?

Format for writing assembly-like code in JavaScript
Motivated by need for greater efficiency and safety
Compilability is a major goal
WC3 standard

Applications beyond browsers

What *Is* WebAssembly

e WebAssembly starts as a binary
o ArrayBuffer or TypedArray
o Can load using fetch (or not)

var wasm = new Uint8Array(123);

wasm[0] = 0x0;
wasm[l] = 0x61;
wasm[2] = 0x73;
wasm[3] = 0x6d;
wasm[4] = 0x1;
wasm[5] = 0x0;
wasm[6] = 0xO0;
wasm[7] = 0x0;
wasm[8] = Ox1;
wasm[9] = Oxa;

WebAssembly Binary Format

e Consists of sections of various types (some optional)
e Mandatory order and duplicates forbidden

Field Type Description section
magic number uint32 Magic number 0x6d736100 (i.e., \Oasm')
version uint32 Version number, 8x1
Field Type Description
id varuint? section code
payload_len varuint32 size of this section in bytes
name_len varuint32 ? length of name in bytes, presentif id == ©
name bytes ? section name: valid UTF-8 byte sequence, present if id == @

payload_data bytes content of this section, of length payload_len - sizeof(name) - sizeof(name_len)

Section Types

Section Name Code Description

Type 1 Function signature declarations
Import 2 Import declarations

Function 3 Function declarations

Table 4 Indirect function table and other tables
Memory 5 Memory attributes

Global 6 Global declarations

Export 7 Exports

Start 8 Start function declaration
Element 9 Elements section

Code 10 Function bodies (code)

Data 11 Data segments

WebAssembly Module

e First step is parsing binary format and loading it into Module

var m = new WebAssembly.Module (wasm) ;

What could go wrong?

CVE-2018-4121 -- WebKit: WebAssembly parsing does not
correctly check section order

e Order check can be bypassed

static inline bool validateOrder (Section previous, Section next)
{
if (previous == Section: :Custom)
return true;
return static_cast<uint8 t>(previous) < static_cast<uint8 t>(next);

What could go wrong?

CVE-2018-6092 -- V8: Integer Overflow when Processing
WebAssembly Locals

e Integer overflow

if ((count + type list->size()) > kV8MaxWasmFunctionLocals)
{

decoder->error (decoder->pc() - 1, "local count too
large") ;

return false;

}

What could go wrong?

CVE-2018-4222 -- WebKit: Info leak in WebAssembly

Compilation
e (Can read out of bounds of the wasm buffer

var b2 = new ArrayBuffer (1000);
var view = new Int8Array (b2, 700);
var mod = new WebAssembly.Module (a) ;

WebAssembly Instance

e Loads module into runnable form
o Loads imports
o Initializes imports
o Creates exports

WebAssembly Imports

e Three import types
o Function: JavaScript or WebAssembly function

o Memory: memory page object
o Table: function table object

e |f two wasm Modules have the same Memory and Table,

they are in the same compartment
e Thereis no practical reason for a Module to share one of

these objects but not the other

WebAssembly Memory

e Memory page for WebAssembly code
e Has ainitial and max size, and can be expanded by calling grow in

WebAssembly or JavaScript
e Accessed by WebAssembly instructions

var memory = new WebAssembly.Memory({initial:10, maximum:100}) ;
memory.grow (10) ;

What could go wrong?

e Overflows in expanding Memory

o CVE-2018-5093 - FireFox: Buffer overflow in WebAssembly during
Memory/Table resizing (found by 0SS-Fuzz)

o CVE-2017-15399 - V8: UaF in Growing Memory (Zhao Qixun of Qihoo 360
Vulcan Team)

What could go wrong?

e Surprisingly few OOB issues
o Limited and known set of WebAssembly instructions
o Limited threading
o Safe signal buffers

Tables

Function table for WebAssembly

Can only contain WebAssembly functions

Only need to set at startup in practice, but can be changed any time
Can grow similar to a Memory page

var t = new WebAssembly.Table({initial:2, element:"anyfunc"})

What could go wrong?

e Overflows in expanding Table

o CVE-2018-5093 -- Buffer overflow in WebAssembly during Memory/Table
resizing (found by 0SS-Fuzz)

o CVE-2017-5122: O0OB access in v8 wasm after Symbol.toPrimitive overwrite
(found by Choongwoo Han of Naver Corporation working with Chromium
Vulnerability Rewards)

Initialization

e Data segments from WebAssembly binary are used to initialize Memory
e Element segments from WebAssembly binary are use to initialize Elements

What could go wrong?

e No OOB issues seen so far!
e V8:826434: UaF in Calling Table

o If atable is changed during a call to a function in the table, there is a UaF, as
it drops the handle to its instance

o Fixed by preventing table change during call

o Still possible due to element initialization

Exports

e End result of creating Module and then creating an Instance is exported
WebAssembly functions ready to call!

var mod = new WebAssembly.Module (wasm) ;
var i = new WebAssembly.Instance (mod,
{imported : {func : f}, js : {table : t, mem : m} });

i.exports.exported func(); // WebAssembly happens!

Runtime Issues?

e Instructions do wrong thing*
e Incorrect bounds checking
e Incorrect handles / UaF

Future Issues

e Concurrency
e WebAssembly-GC

Conclusion

e Several vulnerabilities have been found in WebAssembly
implementations

e WebAssembly has features that make vulnerabilities less
likely

e The future direction of WebAssembly features will
determine its security

Questions and Discussion

hitp://goodleprojectzero.blogspot.com/
@natashenka
natashenka@google.com

