
The Problems and Promise of
WebAssembly

About Me

● Natalie Silvanovich AKA natashenka
● Project Zero member
● Previously did mobile security on

Android and BlackBerry
● Defensive-turned-offensive researcher

What is WebAssembly?

● Format for writing assembly-like code in JavaScript
● Motivated by need for greater efficiency and safety
● Compilability is a major goal
● WC3 standard
● Applications beyond browsers

What *Is* WebAssembly

● WebAssembly starts as a binary
○ ArrayBuffer or TypedArray
○ Can load using fetch (or not)

var wasm = new Uint8Array(123);
wasm[0] = 0x0;
wasm[1] = 0x61;
wasm[2] = 0x73;
wasm[3] = 0x6d;
wasm[4] = 0x1;
wasm[5] = 0x0;
wasm[6] = 0x0;
wasm[7] = 0x0;
wasm[8] = 0x1;
wasm[9] = 0xa;
wasm[10] = 0x2;

WebAssembly Binary Format

● Consists of sections of various types (some optional)
● Mandatory order and duplicates forbidden

section

Section Types

WebAssembly Module

● First step is parsing binary format and loading it into Module

var m = new WebAssembly.Module(wasm);

What could go wrong?

CVE-2018-4121 -- WebKit: WebAssembly parsing does not
correctly check section order

● Order check can be bypassed

static inline bool validateOrder(Section previous, Section next)
{
 if (previous == Section::Custom)
 return true;
 return static_cast<uint8_t>(previous) < static_cast<uint8_t>(next);
}

What could go wrong?

CVE-2018-6092 -- V8: Integer Overflow when Processing
WebAssembly Locals

● Integer overflow
if ((count + type_list->size()) > kV8MaxWasmFunctionLocals)
{
 decoder->error(decoder->pc() - 1, "local count too
large");
 return false;
 }

What could go wrong?
CVE-2018-4222 -- WebKit: Info leak in WebAssembly
Compilation
● Can read out of bounds of the wasm buffer

var b2 = new ArrayBuffer(1000);
var view = new Int8Array(b2, 700);
var mod = new WebAssembly.Module(a);

WebAssembly Instance

● Loads module into runnable form
○ Loads imports
○ Initializes imports
○ Creates exports

WebAssembly Imports

● Three import types
○ Function: JavaScript or WebAssembly function
○ Memory: memory page object
○ Table: function table object

● If two wasm Modules have the same Memory and Table,
they are in the same compartment

● There is no practical reason for a Module to share one of
these objects but not the other

WebAssembly Memory

● Memory page for WebAssembly code
● Has a initial and max size, and can be expanded by calling grow in

WebAssembly or JavaScript
● Accessed by WebAssembly instructions

var memory = new WebAssembly.Memory({initial:10, maximum:100});
memory.grow(10);

What could go wrong?

● Overflows in expanding Memory
○ CVE-2018-5093 -- FireFox: Buffer overflow in WebAssembly during

Memory/Table resizing (found by OSS-Fuzz)
○ CVE-2017-15399 -- V8: UaF in Growing Memory (Zhao Qixun of Qihoo 360

Vulcan Team)

What could go wrong?

● Surprisingly few OOB issues
○ Limited and known set of WebAssembly instructions
○ Limited threading
○ Safe signal buffers

Tables

● Function table for WebAssembly
● Can only contain WebAssembly functions
● Only need to set at startup in practice, but can be changed any time
● Can grow similar to a Memory page

var t = new WebAssembly.Table({initial:2, element:"anyfunc"});

What could go wrong?

● Overflows in expanding Table
○ CVE-2018-5093 -- Buffer overflow in WebAssembly during Memory/Table

resizing (found by OSS-Fuzz)
○ CVE-2017-5122: OOB access in v8 wasm after Symbol.toPrimitive overwrite

(found by Choongwoo Han of Naver Corporation working with Chromium
Vulnerability Rewards)

Initialization

● Data segments from WebAssembly binary are used to initialize Memory
● Element segments from WebAssembly binary are use to initialize Elements

What could go wrong?

● No OOB issues seen so far!
● V8: 826434: UaF in Calling Table

○ If a table is changed during a call to a function in the table, there is a UaF, as
it drops the handle to its instance

○ Fixed by preventing table change during call
○ Still possible due to element initialization

Exports

● End result of creating Module and then creating an Instance is exported
WebAssembly functions ready to call!

var mod = new WebAssembly.Module(wasm);
var i = new WebAssembly.Instance(mod,
 {imported : {func : f}, js : {table : t, mem : m} });

i.exports.exported_func(); // WebAssembly happens!

Runtime Issues?

● Instructions do wrong thing*
● Incorrect bounds checking
● Incorrect handles / UaF

Future Issues

● Concurrency
● WebAssembly-GC

Conclusion

● Several vulnerabilities have been found in WebAssembly
implementations

● WebAssembly has features that make vulnerabilities less
likely

● The future direction of WebAssembly features will
determine its security

Questions and Discussion

http://googleprojectzero.blogspot.com/
@natashenka

 natashenka@google.com

