
Blackbox is dead –
Long live Blackbox!

Vladimir Kononovich

Aleksey Stennikov

ptsecurity.com

Who are we?
Vladimir Kononovich:
• Reverse-engineering: my hobby and my job
• An active romhacking community member

(Sega Genesis/Mega Drive)
• Reverse-engineering since 2008

Who are we?
Aleksey Stennikov:
• Hardware expert
• ICS/SCADA security researcher
• ATM researcher
• Some skills of RE

ATMs – is restricted area! (Not really)
• Simple human cannot just get access

to the ATM hardware

• In most cases there are no docs, SDKs,
programming examples, firmware binaries, etc.

So the usual ATM vendor’s idea is…

Security through obscurity!

 Hide and encrypt everything… so it should be safe (they hope)

 Cabinet
• PC
• Monitor
• Encrypting Pin Pad

(EPP)

• Printer(s)
• UPS unit
• Others

Inside ATM

The most interesting is the dispenser.
Money are here!

 Safe
Cash Dispenser

Data flow

NetworkProcessing
center

Hardware units

Windows-based application

XFS Layer

XFS Service providers

About an ATM security

ATM threats:
- Fraud
- Brute-force
- Malware
- Hardware

attacks

About an ATM security

Source: M. H. de Bijl: Using Data Analysis to Enhance Attack Trees, 2017

Fraud-based attacks
• Widely used

• Trivial techniques

• Is not complex

• Detection is simple

Brute-force attacks
• Widely used

• Primitive

• Efficiency depends on the bank security
services

Malware-based attacks
• Widely used

• One of most popular ATM attack

• XFS layer used

• Complicated infectioning ways are
needed in most cases

What are Black Box attacks?

• Type of logical attacks (along with XFS
attacks and proc-center emulation) using
H/W devices to connect directly to
dispenser for cash withdrawal

• Leave no traces, logs, etc. in most cases

• Requires ATM’s internals an hardware
knowledge

• Doesn’t depend on OS, Processing Center
and application control software

Black Box attacks are…

Source: https://answerpro.ru/services/hardware-development/cerber-ndc-lock/en/#services

https://answerpro.ru/services/hardware-development/cerber-ndc-lock/en/#services

Connection types:

• RS-232

• SDC

• USB

• CAN(?)

Hardware interconnections

• … aka COM-port aka DB9 aka V.24/V.28

• First and most simple ATM hardware
communication interface

• In ATM it used mostly with MUX due to
the small number of ports in the PC

• Is obsolete

• Attacker device is simple laptop and
cheap USB-com converter

Hardware interconnections: RS-232

• Mostly unencrypted

• Some vendors tries to issue patches with
communication encryption but they are
limited by resources of old hardware

• In some cases protocol is ASCII-based,
human-readable and looks like:
“DGTM-01-02\n” that is abbreviation of
DispenserGimmeTheMoney from 1-st
cassette 2 notes

• Is primitive and not interesting for us

Hardware interconnections: RS-232

• … aka RS-485 aka multidrop COM-Port

• Unusual baudrate is used

• Rare size of byte

• Encryption is… XOR

• Firmware is updatable…
by ROM-Chip replacement

• All devices stays in the same network

Hardware interconnections: SDC

We are able to drill front of cabinet next to
EPP and can find SDC-Bus wires

Why it works?

SDC connection looks like:

PC<->EPP<->OtherDevices<->Dispenser

ATM uses special communication board

Hardware interconnections: SDC

It’s called “Drilled Box”

Source: http://rus.delfi.ee/daily/criminal/foto-v-tallinne-i-haryumaa-prestupniki-pytalis-poluchit-nalichnye-iz-bankomatov?id=76460919

http://rus.delfi.ee/daily/criminal/foto-v-tallinne-i-haryumaa-prestupniki-pytalis-poluchit-nalichnye-iz-bankomatov?id=76460919#!dgs=dgsee-187244:A_sbxYtx4_b9-2S4N7ZEO-

• More complex for research:
descriptors, endpoints, their types,
composite devices, etc.

• H/W sniffers are expensive

• Obsolete dispenser with primitive
protocols are still here, but all modern
devices have strong encryption

• Usually it’s HID/composite device

Hardware interconnections: USB

Positive Technologies Research Team findings

Hardware interconnections: USB

1. time() -> 0
2. srand(time())
3. rand() -> Pre-known initial session keys
4. Decrypted packets
5. Known encryption algo and session keys
6. Withdrawn money
7. ?????
8. PROFIT!

Hardware interconnections: USB

Source: https://krebsonsecurity.com/2018/01/first-jackpotting-attacks-hit-u-s-atms/

2017 year dirty trick to bypass maintenance auth:

• Broke shutter

• Put endoscope camera into this hole

• Touch auth sensor as service-man does it with
opened safe door, run “withdrawal test”

• Take money and runaway =)

What to do if packets are encrypted

https://krebsonsecurity.com/2018/01/first-jackpotting-attacks-hit-u-s-atms/

Vendor selection - NCR

• One of biggest vendor
for financial solutions

• Frequently-seen on the projects

• Encrypted hardware
communications

So… NCR S1 Dispenser

What is a dispenser?

Dispenser is a very complex device.

It consists of:

• A lot of mechanisms

• A lot of sensors and drive units

• Control electronics

Dispenser mechanics
Most of dispensers consist of following
components:

• Cassettes + Reject/purge bin

• Pick modules

• Presenter

• Pneumatics

Dispenser controller: Description
Dispenser controller functions:

• To co-ordinate operation of the currency
dispenser transport hardware

• To process instructions from and provide
responses to the ATM core electronics

• To provide a power and logic interface to
the associated pick modules

First questions
1. Where can you get the dispenser’s

firmware binary
if you are not a service-man?

2. Where can you get
the dispenser’s main board
if you don’t work in a bank?

Answers are simple:
1. “C:\Program Files\NCR APTRA\USBCurrencyDispenser\Disp1” (or Disp2)

2. Ebay, or some service-guy (your friend) from some bank

Dispenser controller: Our test assembly

Firmware binary “umitdisp.bin”
• It is not even encrypted!

• ELF-file

• NXP Coldfire (Motorola 68k family)

• OS: VxWorks v5.5.1

• The most interesting sections are: .text and .data

• No symbols are stripped

Beginning…

1) The Dispenser – (in our case) it’s a USB
device

2) Look for some USB receive/send data
thread that works with commands
from an OS software part

3) Dive into datasheets for some constants
(CPU is mcf5272 model)

4) Find these constants in the code

Beginning…

Some of search results (WritePacket, ReadPacket):

After that our journey was successfully started!

Some words about Motorola (dis)assembler
• There are no public decompilers

• C++ vtables and virtual calls
in Motorola!

• Opcode operands order is SRC, DST

General execution scheme
USB Receive Thread

(service commands distribution)

Service1
(Ex.: DispTranService)

Service2
(Ex.: securityService)

Serv1.Class1
(Ex.: 0x01)

Serv1.Class2
(Ex.: 0x02)

Serv2.Class1
(Ex.: 0x01)

Serv2.Class2
(Ex.: 0x02)

Controller1
(Ex.: StackController)

Controller2
(Ex.: PresentBillsController)

… …

Some info about execution scheme

• Identifiable by: own index

• Main function: “::CmdLoop()”

• Has name. For ex.: “DispTranService”

Every service:

Every class:
• Identifiable by: own index

• Has no name

Every controller:
• Identifiable by: own index

• Main function: “::execute()”, also “::validateCommand()”, “::formatResponse()”

• Has name. For ex.: “PresentBillsController”

Dispenser Transaction Service

• Class 0x01: secure-messages

• Class 0x04: encrypted secure messages

Some commands are more secure than others!

First class works with the same messages as the
second one, but filters some “more secure” commands
like “StackController”, “PresentBillsController”

(DispTranService – the most interesting service)

Security Service
(securityService – generates keys for the encrypted security messages)

• Class 0x01: initial keys exchange process

3) Send “HandleInitiateKeyExchange” command to receive the
encryption key
(at the picture: first block of whole packet)

Then all encrypted messages must be encoded with the
key received in answer and the rolling part of that key

1) To exchange encryption keys between the PC and the
dispenser PC sends “AuthDispCommsController” message

2) Then you must toggle a bottom cassette in the safe
to allow key exchange

But what can we do
without a physical access to the safe?

1. There must be some way which OS uses to update the
dispenser firmware!

2. Who verifies a downloadable binary, applies it
permanently etc.?

We must find the “bootloader” part!

Sometimes it is not needed. It depends on the Protection level:
0 – USB (Software development)
1 – Logical (There is no difference between 0?)
2 – Physical (Requires physical access) Physical

UsbDownloadService

• Class 0x01: Initiate download

• Class 0x02: Identify device

(Firmware downloading initialization)

Command is not secured
and not encrypted!

To initialize firmware download you
must just send a packet like this:

Hello, Bootloader!

S1 (S2) “Secure” Bootloader
• Zlib-compressed code is located in “.data” section
• No symbols
• Image base is 0x100000
• Is not secure!

• One wrong step –
the dispenser
will be bricked!

• Without a correct
NVRAM-dump before
any tries your dispenser
will be bricked!

S1 (S2) “Secure” Bootloader
(Steps to download your “fixed” firmware)

1. Reboot into bootloader
2. Generate RSA keys pair and send public key
3. Reboot the device

Only the first block

Going into
bootloader

Hard resetter

S1 (S2) “Secure” Bootloader
(Steps to download your “fixed” firmware)

4. Send sequentially “.data” and “.text” ELF-sections using their
physical addresses as the destination in packet fields (#0.3.0)

At this moment you must calculate SHA1 and encrypt
it with the private key using PKCS1-padding

Only the first block

S1 (S2) “Secure” Bootloader
(Steps to download your

“fixed” firmware)

5. Send the firmware signature
packets so the bootloader
will check it

6. Calculate a sum of all firmware
words that were sent and send
it to run our
new firmware

S1 (S2) “Secure” Bootloader

There is one restriction:
downloadable firmware version
must not be lower than current one!

But you can patch the
firmware version at any time:

Also we can patch “secureCommand”
function to be able to send any
command without encryption

S1 (S2) “Secure” Dispenser
• Safe-zone “cassette toggle” is not required anymore!

• Protection level will not be changed (stay “Physical”)

Physical

StackController

• Main thing that prepares banknotes to be withdrawn

• Has many parameters and purposes

• Checks cassettes for banknotes availability

• Checks other peripherals are prepared
to money withdrawal

StackController::validateCommand()

StackController
Dispenser doesn’t know the exact banknotes amount that every cassette has.
Also it doesn’t know what denomination every cassette has.

Possible measurements for cassettes are only:
• Empty
• Middle
• Full

No real packet was captured for this, sorry.
This is a hexdump from Python formed packet

Give me [0x05, 0x00, 0x00, 0x00]
real banknotes
from the [0x01, 0x02, 0x03, 0x04]
virtual cassettes

But:

Our first try (unsuccessful)

1. Fixed firmware was uploaded
2. StackController packet was sent
3. - We: “Gimme money!”

- ATM: “Nope!”
- We: “Why!?..”
- ATM: “…”

One day in one XYZ bank…

ClearMainTransportController
• Initializes peripherals

• Initializes variables

• Retracts money that were not taken

• Must be sent by the PC to the dispenser before the first transaction

No real packet was captured for this, sorry.
This is a hexdump from Python formed packet

Our second try (successful)
1. “Unsecured”

firmware downloaded

2. ClearMainTransport

3. StackController

4. ?????

5. PROFIT!

Demo

CVEs list:

• CVE-2017-17668 (NCR S1 Dispenser)

• CVE-2018-5717 (NCR S2 Dispenser)

Assigned CVEs

According to vendor’s paper
this vulnerability has been fixed in the February security fix.

https://www.ncr.com/content/dam/ncrcom/content-type/case_studies/ncr_security_alert_-_2018-04_v3.pdf

https://www.ncr.com/content/dam/ncrcom/content-type/case_studies/ncr_security_alert_-_2018-04_v3.pdf

Thank you for listening!

Contacts:
Vladimir Kononovich – vkononovich@ptsecurity.com
Aleksey Stennikov – astennikov@ptsecurity.com

blog.ptsecurity.com
facebook.com/PositiveTechnologies
Twitter.com/ptsecurity_uk

mailto:vkononovich@ptsecurity.com
mailto:astennikov@ptsecurity.com

