
Unpacking the Packed Unpacker
Reversing an Android Anti-Analysis Native Library

Maddie Stone
@maddiestone
BlackHat USA 2018

● Reverse Engineer on Google’s
Android Security Team

● 5+ years hardware & firmware
reversing of embedded devices

● Creator of IDAPython Embedded
Toolkit

● BS in Computer Science, Russian,
& Applied Math

● MS in Computer Science

Who am I? - Maddie Stone

@maddiestone

Malware Analysts vs Malware Authors
striving for the asymmetric advantage

Anti-analysis: techniques to

frustrate analysis and make

reverse engineering malware

more difficult

Objective: Determine if an app is malware. Quickly.

● Have an app that looks suspicious, but need evidence to

determine if it’s malware
○ App won’t run in dynamic analysis

○ Most code is native

○ Many similar apps

Analyst Challenge

Target of Analysis: Android App Native Library

(*.so in ELF format)

Introduction - Target of Analysis

META-INF/
classes.dex
AndroidManifest.xml

libdxarq.so

APK

Introducing WeddingCake!
...because it has lots of layers

● 5000+ distinct APK samples containing WeddingCake
● Used by newer variants of Chamois family
● Protects functionality that authors want to hide by

“wrapping” it in anti-analysis protections

Purpose of WeddingCake

https://security.googleblog.com/2017/03/detecting-and-eliminating-chamois-fraud.html

WeddingCake Anti-Analysis Techniques

JNI Manipulations

In-Place Decryption

Run-Time Environment Checks

Anti-Reverse Engineering

Check System Properties
Verifying CPU architecture
Check for Monkey
Check for Xposed Framework

● Android native library included in APKs as .so/ELF
● Different name in each sample

lib[3-8 random lowercase characters].so

● Java classes that interface with library have random
names -> different for each sample
ses.fdkxxcr.udayjfrgxp.ojoyqmosj.xien.xmdowmbkdgfgk

● Two strings under the .comment section in the ELF:
 Android clang version 3.8.275480 (based on LLVM 3.8.275480)
 GCC: (GNU) 4.9.x 20150123 (prerelease)

Characteristics of WeddingCake

● Two Java-declared native methods with the following
signatures
○ **The names of the methods change in each sample**

 public native int vxeg(Object[] p0);

Performs run-time environment checks and the ELF’s

main functionality
public static native String quaqrd(int p0);

Returns string at index p0 in a hard-coded array

● Samples often have a 3rd method declared:
 public native Object ixkjwu(Object[] p0);

Characteristics of WeddingCake

● 32-bit “generic” ARM is most common (armeabi)
● Also seen other versions of the library:

○ 32-bit ARMv7 (armeabi-v7a)
○ ARM64 (arm64-v8a)
○ x86 (x86)

92e80872cfd49f33c63993d52290afd2e87cbef5db4adff1bfa97297340f23e0
https://bit.ly/2Ll8eT0

CPU Variants of WeddingCake

Anti-Analysis Lib File Paths Anti-Analysis Library “Type”

lib/armeabi/librxovdx.so 32-bit “generic” ARM

lib/armeabi-v7a/librxovdx.so 32-bit ARMv7

lib/x86/libaojjp.so x86

https://bit.ly/2Ll8eT0

Analyzing WeddingCake

Sample:
e8e1bc048ef123a9757a9b27d1bf53c092352a26bdbf9fbdc10109415b5cadac
https://bit.ly/2Nkc4ZS

● JNI allows developers to declare Java native methods that
run in other languages (C/C++) in the application

● Native methods are declared in Java

 public static native String quaqrd(int p0);

 public native Object ixkjwu(Object[] p0);

 public native int vxeg(Object[] p0);

● The declared Java native method is implemented in
C/C++

Intro to Java Native Interface (JNI)

“Getting Started with the NDK”, Android, https://developer.android.com/ndk/guides/

“JNI Tips”, Android, https://developer.android.com/training/articles/perf-jni

https://developer.android.com/ndk/guides/
https://developer.android.com/training/articles/perf-jni

System.loadLibrary(“calc”)
or

System.load(“lib/armeabi/libcalc.so”)

When load() or loadLibrary() is called in Java, the ELF is
“loaded” and JNI_OnLoad() is run in the ELF

Intro to Java Native Interface (JNI)

● “Registering” native methods: pair the Java method
declaration to the correct subroutine in the native library

○ “Discovery”: the function names and function signatures
matching in both Java and the .so

Java_<mangled class name>_<mangled method_name>

○ RegisterNatives JNI function
■ Requires string of the method name and the string of the

method signature

Intro to Java Native Interface (JNI)

“Resolving Native Method Names”, Oracle, https://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/design.html#wp615

“Registering Native Methods in JNI”, Stack Overflow,
https://stackoverflow.com/questions/1010645/what-does-the-registernatives-method-do

https://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/design.html#wp615
https://stackoverflow.com/questions/1010645/what-does-the-registernatives-method-do

jint RegisterNatives(JNIEnv *env, jclass clazz,
const JNINativeMethod *methods, jint nMethods);

typedef struct {
 char *name;
 char *signature;
 void *fnPtr;
} JNINativeMethod;

● Signatures
 public static native String quaqrd(int p0); →

 “(I)Ljava/lang/String;”

Intro to Java Native Interface (JNI)

● None of the native
method names exist in
native lib (as funcs or
strings)

● JNI_OnLoad is exported,
but not defined in IDA
○ The bytes at +0x24,

+0x28, and +0x44 are
defined as data

● No strings
○ Including method

names and signatures

First Look

● Start with JNI_OnLoad

● Repetitive calls to same
function over different blocks
of memory → Encryption

sub_2F30: Decryption Subroutine

Beginning Analysis

sub_2F30(Byte[] encrypted_array, int length, Word[]
word_seed_array, Byte[] byte_seed_array)

● encrypted_array: Pointer to the encrypted byte array
(bytes to be decrypted)

● length: Length of the encrypted byte array
● word_seed_array: Word (each value in array is 4 bytes)

seed array
● byte_seed_array: Byte (each value in array is 1 byte) seed

array

In-Place Decryption

 byte_seed_array = malloc(0x100u);
 index = 0;
 do
 { byte_seed_array[index] = index;
 ++index; }
 while (256 != index);
 v4 = 0x2C09;
 curr_count = 256;
 copy_byte_seed_array = byte_seed_array
 do
 {
 v6 = 0x41C64E6D * v4 + 0x3039;
 v7 = v6;
 v8 = copy_byte_seed_array[v6];
 v9 = 0x41C64E6D * (v6 & 0x7FFFFFFF) + 0x3039;
 copy_byte_seed_array[v7] = copy_byte_seed_array[v9];
 copy_byte_seed_array[v9] = v8;
 --curr_count;
 v4 = v9 & 0x7FFFFFFF;
}

Generating the Seed Arrays
 while (curr_count);
 word_seed_array = malloc(0x400u);
 index = 0;
 do
 {
 word_seed_array[byte_seed_array[index]] =
 index;
 ++index;
 }
 while (256 != index);

● Output of the Seed Array Generation Algorithms:
○ Byte Seed Array - byte array from 0 to 0xFF
○ Word Seed Array - word (4 bytes) array from 0 to 0xFF

● Anti-Reversing Technique
○ Complex algorithm instead of simple algorithm

● Bypass:
○ Run dynamically and capture arrays

Generating the Seed Array: Anti-Reversing

● The overall framework of the in-place decryption process
is:

1) Decryption function is called on an array of encrypted bytes

2) Decryption is performed

3) The encrypted bytes are overwritten by the decryption bytes

● Not identified as any known encryption/decryption
algorithm

Decryption Algorithm

● Need to decrypt the native library quickly for further
analysis
○ Don’t need to understand the decryption → just need to build

a solution to decrypt it
○ “Translate” the decryption function to something that can run

over the ELF
● Want any solution to be applicable to the multitude of

samples
○ Different memory address, registers

IDAPython Decryption Script:
http://www.github.com/maddiestone/IDAPythonEmbeddedToolkit/And
roid/WeddingCake_decrypt.py

Decrypting the Library

http://www.github.com/maddiestone/IDAPythonEmbeddedToolkit/Android/WeddingCake_decrypt.py
http://www.github.com/maddiestone/IDAPythonEmbeddedToolkit/Android/WeddingCake_decrypt.py

ASM

0x2F4E 04 20 MOVS R0, #4

0x2F50 C4 43 MVNS R4, R0

0x2F52 00 22 MOVS R2, #0

0x2F54 04 B4 PUSH {R2}

0x2F56 20 BC POP {R5}

“Translating” the Decryption to IDAPython

PYTHON

reg_0 = 4

reg_4 = ~(0x00000004)

reg_2 = 0

reg_5 = 0

Decryption Demo

● Speed
○ “Translating” to a format that can run over ELF instead of

reversing for understanding
■ Python, ARM (or other CPU) emulators, etc.

● Flexibility
○ Doesn’t have to be modified to run over different samples

■ RegEx instead of hard-coded addresses/registers
■ Dynamically read bytes to be decrypted

Developing Decryption Solutions

Each of the encrypted arrays decrypts to a string

Decrypted Contents

Decrypted Contents

The method numbers in the left most column are used to
identify the identical method in other samples where the
method name is different, but the signature is the same

Decrypted Contents

Native
Function
Name

Native
Subroutine
Address

Signature Human-Readable
Signature

1 vxeg 0x30D4 ([Ljava/lang/Object;)I public native int
vxeg(Object[] p0);

2 quaqrd 0x4814 (I)Ljava/lang/String; public static native
String quaqrd(int p0);

3 ixkjwu ---- ([Ljava/lang/Object;)Ljava
/lang/Object;

public native Object
ixkjwu(Object[] p0);

Run-Time Environment Checks

Goal: Detect if application is being dynamically analyzed,
debugged, or emulated

The developers would rather limit the number of
potential targets than risk being detected

Run-Time Environment Checks

● Function #1 (vxeg) performs the run-time environment
checks

● 45+ run-time checks:
○ Checking system properties
○ Verifying CPU architecture by reading the

/system/lib/libc.so ELF header
○ Looking for Monkey by iterating through all PIDs in /proc
○ Ensuring the Xposed Framework is not mapped to the

application process memory

● If any one of these conditions is detected, the Linux exit(0)
function is called, which terminates the Android application

Run-Time Environment Checks

Goal: Check if system properties show
that the “hardware” is an emulator or

being debugged

● 37 system properties are checked
for specific values

○ Mostly debugging & emulation
checks

○ All at https://bit.ly/2KD5k7S

● 5 system properties are checked
for existence

System Property Checks

If any of these System Properties
exist, the application exits

init.svc.vbox86-setup

qemu.sf.fake_camera

init.svc.goldfish-logcat

init.svc.goldfish-setup

init.svc.qemud

Goal: Ensure the application is running on ARM

● Read 0x14 bytes from /system/lib/libc.so
○ Reading the ELF header

● Verify one of the following conditions is true:

 e_ident[EI_CLASS] == 0x01 (32-bit) AND e_machine == 0x0028 (ARM)

 e_ident[EI_CLASS] == 0x02 (64-bit) AND e_machine == 0x00B7 (AArch64)

Verifying CPU Architecture

Goal: Determine if application is run in emulator with “fake” user

● “The Monkey is a program that runs on your emulator or
device and generates pseudo-random streams of user
events such as clicks, touches, or gestures, as well as a
number of system-level events.”

● Iterates through every PID directory under /proc/ to
determine if com.android.commands.monkey is running

○ Note that this no longer works on Android N+

Identifying if Monkey is Running

1. Verify d_type from the dirent struct == DT_DIR
2. Verify d_name from the dirent struct is an integer
3. Construct path strings: /proc/[pid]/comm and

/proc/[pid]/cmdline where [pid] is the directory entry
name that has been verified to be an integer

4. Attempts to read 0x7F bytes from both comm and cmdline
constructed path strings

5. Stores the data from whichever attempt (comm or cmdline)
read more data

6. Checks if the read data equals
com.android.commands.monkey, meaning that package is
running

Identifying if Monkey is Running

Goal: Confirm the application is not being analyzed and
hooked with the Xposed Framework

● The Xposed Framework allows hooking and modifying of the
system code running on an Android device

● Checks if LIBXPOSED_ART.SO or XPOSEDBRIDGE.JAR exist in
/proc/self/maps

● Tries to find either of the following two classes using the JNI
FindClass() method
○ XC_MethodHook: de/robv/android/xposed/XC_MethodHook
○ XposedBridge: de/robv/android/xposed/XposedBridge

Current Process not Hooked with Xposed Framework

Summary of Run-Time Environment Checks

JNI Manipulations

In-Place Decryption
Run-Time Environment Checks

Anti-Reverse Engineering

Check System Properties
Verifying CPU architecture

Check for Monkey
Check for Xposed Framework

Conclusion

Malware authors are willing to miss-out on potential targets if
that means not being detected

● Layered Anti-Analysis Techniques:
○ Techniques that deter human analysis (anti-RE, decryption)
○ Techniques that prevent dynamic analysis (decryption)
○ Techniques that detect dynamic analysis, debugging, &

emulation

Conclusion

● Current Android anti-analysis techniques: Android
malware authors are becoming more sophisticated and
implementing new techniques to hinder analysts and
reverse engineers

● Avoid anti-analysis techniques: How to identify Android
anti-analysis and anti-reversing traps in disassembly &
how to avoid them, instead spending time and analytical
resources on the malicious payload

● Writing decryption solutions: How to write a script to
decrypt an ELF library with a focus on speed and flexibility
(referring to memory addresses and registers) to reverse
engineer more malicious payloads more quickly

Key Takeaways

THANK
YOU
@maddiestone

github.com/maddiestone/IDAPythonEmbeddedToolkit

● In Java, call one of two methods to “load” the native library
where the native method is implemented:
○ System.loadLibrary()

■ If the .so lives in the expected path
/lib/<cpu>/lib<name>.so → System.loadLibrary(<name>)

■ Will automatically detect CPU and select appropriate
library

○ System.load()
■ Requires the full path to the library
■ Developer manually selects which CPU version of the lib

to load
● When load or loadLibrary is called in Java bytecode,

JNI_OnLoad is run in the native library

Intro to Java Native Interface (JNI)

