blgc’zk hat

USA 2018

@lb‘ag{;
@vinuli
@domenuk

AUGUST 4—9, 2018
MANDALAY BAY / LAS VEGAS /
o -
Follow The White Rabbit =
Simplifying Fuzz Testing Using FuzzExMachina £

¥ #BHUSA / @BLACKHAT EVENTS

blgczkhat@ Who Are We?

LUSA 20138

Vincent Ulitzsch

Grad Student @ TU Berlin
Intern @ Security Research Labs

Bhargava Shastry
PhD Student @ TU Berlin

Security Researcher

Dominik Maier

PhD Student @ TU Berlin
Program Manager Security @ AVM GmbH

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 2

blgc}zk hat TL,DR

LUSA 20138

FuzzExMachina [FExM]

Automated fuzzing framewaork
Clever tricks up its sleeve

BYOB or fuzz distribution scale
Found numerous bugs and crashes

Free and open source

— https://github.com/fgsect/fexm

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina

https://github.com/fgsect/fexm

bl£¢’=khat® Outline

LUSA 20138

e Introduction
Demo 1: Bring Your Own Binary
e FuzzExMachina
Demo 2: Bug Dashboard
e Findings
o TimeWarp
Demo 3: TimeWarp@BY(OB
e [Conclusion

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina

bl£3=k hat

LUSA 20138

Introduction
FuzzExMachina
Findings
TimeWarp
Conclusion

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 5

blgc}:khaf Introduction

LUSA 20138

TL;DR: Throw corner-case input at a program until it breaks

COMPUTER SCIENCES DEPARTMENT
UNIVERSITY OF WISCONSIN-MADISON

CS 736 Bart Miller
Fall 1988

Operating System Utility Program Reliability —| The Fuzz Generator: |The goal of this project is to
evaluate the robustness of various UNIX utility programs, given an unpredictable input stream. This

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina

O -
blackhat A Brief History of Fuzzing

LUSA 20138

Feedback Guided
Input Spec. Guided

<DataModel name="Proto">

</DataModel>

1alsleln
cat /dev/urandom | program
| @ : @ —@ >
ey Early Late

8@&55 2000's 2000's

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 7

blgczkhat@ Gtate of the Art

LUSA 20138

0OSS-Fuzz - Continuous Fuzzing for Open Source Software
google / oss-fuzz @Watch~ 196 s Star 2905 Fork 492
<> Code Issues 77

0OSS-Fuzz - continuous fuzzing of open source software

4 trillion SR

LEEIE CE5EE
What is Microsoft Security Risk Detection?
p e r W e e k ! Security Risk Detection is Microsoft's unique fuzz testing service for finding security critical bugs in software. Security Risk Detection

helps customers quickly adopt practices and technology battle-tested over the last 15 years at Microsoft

READ SUCCESS STORIES >

yFuzz
yahoo / yfuzz @MWatch~ 10 Star

<> Code Issues 8

A project to run fuzzing jobs at scale with Kubernetes.

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 8

bIQ:khaf Trophies Abound

LUSA 20138

Google's Fuzz bot exposes over 1,000
open-source bugs

The OSS-Fuzz robot has uncovered vulnerabilities in a number of key open-source projects.

E_‘ By CHailie OSbOorIe ToF 284G Dy | My 6, 2017 -~ 0750 GMT (6850 BST) | Topic: Sediiit

Linus Torvalds says targeted fuzzing is
improving Linux security

Linux 4.14 release candidate five is out. "Go out and test," says Linus Torvalds.

F& By Liam Tung | October 17, 2017 -- 12:34 GMT (13:34 BST) | Topic: Securit

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina

*Aleph One. Smashing the Stack for Fun and Profit. Phrack 7, 1996

We still find buffer overflows like it's 1996*

Why are dev/0A teams not fuzzing yet?

*
blgc’zkhat@’ We Are Fuzzing the Sub 1%

LUSA 20138

e (Google 0SS-Fuzz
- <150 projects
- < 2 years old

e Modern OS distribution
- > 00K projects

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 1

What about the 99%"7

blgc}=khat® Case Study: Open vSwitch

LUSA 20138

Bhargava Shastry @ibags - Jun 22
Yesterday, my pull request for integrating Open vSwitch into OSS Fuzz was

¢ merged. | believe OvS is the first network switching software to be continually

fuzzed. &

>

e Here's what! did
- Write a test program
- Provide seed corpus
- Write a build script and a Dockerfile

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 13

blgc}:khaf Googler Perspective

LUSA 20138

@ Bhargava Shastry T

Hey @kayseesee am curious why, in your
opinion and experience, why oss-fuzz has
relatively few (~150) projects even after 1.5y
since it's announcement? Do you attribute to
lack of awareness and participation,
apprehension, all of these or other reasons?

L |

@ Kostya Serebryany @kaysees

Huge inertia. Many people are not aware of fuzzing as a concept, or how easy-
to-use the tools are today. Some have religious reasons, most simply have no
time. Most commercial orgs are no better. Need people like you to advertise
continuous fuzzing and to make first steps :)

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina

Huge Inertia

Lack of awareness
Religious reasons
No time

14

bl£¢’=khat® Expectation

LUSA 20138

Dev: Fuzz my software repo for me
Bot: Here you go, these are the bugs | found!

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 15

bla‘l'c’:khaf Reality

LUSA 20138

Dev: Fuzz my software repo for me
Bot: Give me test case, seeds, config and build script
Dev: kthxbye

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 18

ble‘:?:khaf Design Philosophy

LUSA 20138

Start automatic fall back to manual

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 17

It's Demo time folksl!
DEMO[FExM]

18

blgc’zk hat

LUSA 20138

Introduction
FuzzExMachina
Findings
TimeWarp
Conclusion

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina

blgc’zkhat@’ FuzzExMachina [FExM]

LUSA 20138

Distributed, large scale fuzz testing framework

Simplifies the fuzzing process

Almost entirely automated

Built around battle-proof software

Start fuzzing hundreds of packages immediately

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 20

blgc’zkhat The FExM Pipeline

LUSA 20138

Crawl Infer Select E U] INEDL(E
Binaries Inputs Seeds | Crashes

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 21

blgc}:khaf The FExM Pipeline [1/6]

LUSA 20138

A

Crawl Infer Select E U] INEDL(E
Binaries Inputs Seeds | Crashes

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 22

blackhat Crawling for Binaries

USA 2018
Choose Compile Extract
Repository Package Binaries
A Compile //
O & instrument
; (if possible) -
ff"

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 23

»
L 4

blackhat Instrumentation for Feedback
NISATENN S

To receive feedback, we can use instrumentation at

Compile Time Run Time

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 24

blgc}zkhat The FExM Pipeline (2/86]

LUSA 20138

A

C’)

Crawl Infer Select E U] INEDL(E
Binaries Inputs Seeds | Crashes

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 25

.

blackhat |nput Vector Inference
USA 2018

tcpdump -nvr file.pcap

|
ldentify this

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 26

blackhat |nput Vector Inference
USA 2018

For each binary in the repo
[dentify:

1. Parameters (whenis input processed?)
2. Input channel (stdin/socket, file by filename?)
Examples:

e tcpdump -nvr <file>
e wget localhost 80 — via preeny desock

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 27

blackhat Parameter Inference
NISATENN S

t
[
[

— A
2 Collect For each Validate g
5 Parameter » Parameter k)
e / Candidates candidates S
@)

C
€ _ parse help-flag does param |
S 8 other heuristic lead to al

()]
Q% B iInput processing? %
= = 5 S
509 a
a<<m
O | I U
)

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina

N
(e0]

blackhat Parameter Validation
NISATENN S

Invoke with dummuyfile

strace -yy -f.. -- binary > Processed?
<invocation>
| grep for:
| |
SN | FILE: Eggiﬁgﬁﬁﬂilﬁigi
NETWORKS —fdanngﬁHe
desock &
<dummy

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 29

blgc}zkhat The FExM Pipeline (3/8]

LUSA 20138

A

C’)

Crawl Infer Select E U] INEDL(E
Binaries Inputs Seeds ' Crashes

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina Elo)

blgc}zkhat@’ About Seeds

LUSA 20138

A good seed is a valid program input
— |dentify {file type || protocol} the program parses

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 31

blackhat Inference: Assumption
USA 2018

File type and protocol inference are based on coverage
— Correct input yields higher coverage

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 32

blgc}zkhat@’ Seeds From...? Github!

LUSA 20138

Repos often include small, diverse test files
that cover corner cases.

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 33

blgt’:khat@ Coverage per File Type

LUSA 20138

- /'pcap
NS
@
@)
G
0 ©
>
o >
O C
-DI
QO A
5 E LT [|
D) T O O0OFHDD> N >00F N OF
%g— E’gggggggggggeeg
()]
e S

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina .
Filetype

*

incarrect file types

|
I

2LERETETD
= —‘Q.EU)UJO
a @®©

pspimage =

34

. .

blackhat Coverage Distribution Patterns
USA 2018

Coverage Distribution for a binary follow patterns

Single Multiple Unclassifiable
File Type File Types

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 35

blgc}zkhat The FExM Pipeline (4/6]

LUSA 20138

A

C’)

Crawl Infer Select F Uz INEDL(E
Binaries Inputs Seeds : Crashes

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 36

O -
blackhat FExV Fuzzing Stage

LUSA 20138

Uses American Fuzzy Lop

Using dictionaries where appropriate
Use Sanitizers

Network fuzzing via modified desock
FExM schedules them round robin

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 37

blgc}zkhat The FExM Pipeline (5/6]

LUSA 20138

A

C’)

Crawl Infer Select E U] Triage
Binaries Inputs Seeds ' Crashes

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 38

blgc}zkhat@’ What is triaging?

LUSA 20138

We have way too many results!
Categorize them!
FExM leverages exploitable & afl-utils

Classifying & Deduplicating

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 39

bl£¢’=khat® Triaging via ASAN

LUSA 20138

==3955==ERR0OR: AddressSanitizer:
heap-buffer-overflow on address

¥ 0xB100000001f5 at pc
SEcurity gy5558cag20c3e bp Ox7ffd85b1b390

Criticality gp px7ffd85b1ab40
"_READ of size 16 at Ox61000000015

thread TO
#0 Ox5558ca920c3d) 3f6494e7343cbhb108505D

#1 Ox5558ca966533 & 2c8848e5co3d
#2 Ox555868960828_ MDS5 Hash: Unigue

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina - o eo 40
identifier

blgc’zkhat The FExM Pipeline (6/6]

LUSA 20138

Dashboard

Crawl Infer Select E U] INEDL(E
Binaries Inputs Seeds | Crashes

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 41

blgc’:khatﬁ Dashboard

LUSA 20138

Show |10 ~|entries

Package
Version Worst -
Crash

Total number of Total number
crashing binaries of crashes

Package

Usage Status

Package

Now inferring invocation for /build/bash/repos/core-x86_64/src/bash-

1968 = RLRUIAEL= Y 1 4 4/builtins/psize.aux

" Fuzzing /build/sqlite/repos/core-x86_64/src/sqlite-src-
sqlite 100.0 EXPLOITABLE 3240000/showjournall
libidn 100.0 EXPLOITABLE Fuzzing /build/libidn/repos/core-x86_64/src/libidn-

’ 1.34/examples/ libs/example5!

g Fuzzing /build/procps-ng/repos/core-x86_64/src/procps-ng-
procps-ng 99.99 EXPLOITABLE 3.3.15/.libs/pkill!
- . Fuzzing /build/libcap-ng/repos/extra-x86_64/src/libcap-ng-
lincdi-tg SN 100 9 Hone 0.7.9/utils/ libs/filecap!

gzip 100.0 None Fuzzing /build/gzip/repos/core-x86_64/pkg/gzip/usr/bin/gzip!
mpfr 100.0 None Fuzzable binaries detected:

linux-api- 100.0 Nohe Fuzzing /build/linux-api-headers/repos/core-any/src/linux-
headers ’ 4.16/scripts/basic/fixdep!

libgpg- 100.0 None Now inferring invocation for /build/libgpg-error/repos/core-
error ’ x86_64/src/libgpg-error-1.32/tests/t-lock

libmnl 99.99 None Fuzzable binaries detected:

Showing 1 to 10 of 62 entries Previous ‘ 1 ‘ 2

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina

DEMO[FExMDashboard]

43

blgc’zk hat

LUSA 20138

Introduction
FuzzExMachina
Findings
TimeWarp
Conclusion

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina

44

blgc}zkhat@’ FExM on a Large Scale

LUSA 20138

e Ran FExM against Arch Linux packages
o Sorted by pkgstats = popularity index
o Evaluated Top 500 packages
o About 200 contained binaries
e Hardware
o 32 CPU cores
o 128 GB RAM
o A few days of time

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 45

blgc}zk hat Day0

LUSA 20138

(FExM) fuzz@sev$ fexm fuzz ./top5S00.json

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 46

ble‘l?::k hat Day

LUSA 20138

’ ,"s " 2 ’ 3 i
P .' ,_‘1 W’ 1
1.CAN HAZ CUES?
gflipico =

0 O S s o

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 47

blgc}zk hat Day?’Z

LUSA 20138

After 2 days of runtime

200 packages

Crashes for 29 packages,

12 exploitable (automatically triaged)

All of these packages have high popularity

o sysctl (modifies kernel properties)

o hyphen (does.. hyphens? (Part of libreoffice))

o gif2png (not popular] (but who doesn't like gifs?)
e

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 48

What if FExM Inference Fails?

o0

-
bl£2=khat® What if FExM Inference Fails?

LUSA 20138

e |f we evaluate on a large scale:
Who cares, right? We have so many!

= Y/

Not so fast!

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 51

ble‘x?:khaf Design Philosophy

LUSA 20138

Start automatic fall back to manual

w— e
| Ay
-

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 52

-
blgc’zkhaf’ What if FExM Inference Fails?

LUSA 20138

e |f we evaluate on a large scale:
= Y|/ we can fall back to
e [ExM Dashboard lists binaries that need attention
e |dea: easy for users to understand tools correctly
Bonus: let user decide where to start fuzzing

+ Learn seeds on the way

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 53

blgc’zk hat

LUSA 20138

Introauction
FuzzExMachina
Findings
TimeWarp
Conclusion

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 54

blgc}=khat® Unfuzzable

LUSA 20138

printf("Enter 8 Char Pwd> "); p8881 ==
;‘éé:;[(]r‘);fu?:;‘:; bufsize, stdin); && Str[en[] ==

fgets(newline, sizeof(newline), stdin);

if (newline[0] != '\n') exit(printf("passwordsize incorrect" iCO\/e rage doeS mot he[p|

printf("Reenter this Pwd> ");

TTlush(stdout); = brute force 8 dlgltS
fgets(buf, (int) bufsize, stdin);
fgets(newline, sizeof(newline), stdin);

if (newline[0] '= '\n') exit(printf("passwordsize incorrect"));

if (strlen(pw) != 8 || strncmp(buf, pw, bufsize) != 0) {
fprintf(stderr, "Passwords needs to be at least 8 chars long and matching.\n");
fflush(stderr);
return 1;

}
strncat(complete, buf, PWSIZE);

Fuzzer will run forever
A human can solve it in no time

printf("St

Frlushistdbub) Cr oSN DETOW

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 55

blgc}zkhat‘@ TimeWarp

LUSA 20138

e Starts fuzzing at any given point in the execution
e Requires little technical knowledge

e Fullyintegratedin FExM Dashboard
— Spawns Docker
— Spawns TimeWarp with the target binary
— Attaches Dashboard to stdio & cnc ports
e Allows easy generation of test cases manually

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 57

.
bla‘l'c’:khaf Details

LUSA 20138

stdio (Port OxAFQO)

\Spawns

CnC (Port OxAF1)

Input
;oy X'@Target
Target ‘ — Input
“XZ@TimeWarp
‘ Y ! * INnput
Forkserver @TimeWarp

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina

S1iNnsay

Input via

stdio/sock
then
-cNnc-
then
AFL Queue

58

blg’ckhat AFL Timewarp

LUSA 20138

o > Ty N

; ' “l:‘;eatg do the time warp. agaln an tﬁ‘es?é gifs

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina O((\CA % 50

DEMO]

]

61

fuzzwarp/fuzzwarp on } master [?] . .
[I] » nc localhost 2801 CnC Start fUZZ|ng

Welcome to AFL Timewarp.
Start learning with "L"

reset to L and accept current input as Fuzzer input using "R" (repeat this multiple times),

then start Fuzzing with "F",
exit with "E".

F fuzzwarp/fuzzwarp on } master [?]
[I] » nc localhost 2800

Enter 8 Char Pwd> TESTTEST

AFL-TW Output american fuzzy lofeeenter this pwd> TESTTEST ~ SaI°
i T DN String to append to pwd> [
run time : 0 days, O hrs, 0 min, 13 sec	cycles done : 0
last new path : none seen yet	total paths : 1
last uniq crash : 0 days, 0 hrs, 0 min, 0 sec	unig crashes : 2
last uniq hang : none seen yet	uniq hangs : 0
= cveleRDrOgr eSS E=Em s mEEEEEEE e - - - = Map coVeragge: <= asadasanasasaaxa +	
now processing : 0 (0.00%)	map density : 0.02% / 0.02%
paths timed out : 0 (0.00%)	count coverage : 1.00 bits/tuple
+~ stage progress ---=-=-=c=cecececa-- +- findings in depth ---======csc-cncwe=- i	
now trying : havoc	favored paths : 1 (100.00%)
stage execs : 36/1024 (3.52%)	new edges on : 1 (100.00%)
total execs : 522	total crashes : 2 (2 unique)
exec speed : 225.6/sec	total tmouts : 0 (O unique)
+= ‘fuzzing strategy yields =-=====-=u- Fmm e e e - +- path geometry -------- +	
bit flips : 0/32, 0/31, 0/29	levels : 1
byte flips : 0/4, 0/3, 0/1	pending : 1
arithmetics : 0/221, 0/0, 0/0	pend fav : 1
known ints : 0/28, 0/84, 0/44	own finds : 0
dictionary : 0/0, 0/0, 0/0	dimported : n/a
havoc : 0/0, 0/0	stability : 100.00%
trim : n/a, 0.00% o e +	
AC=mmmmmm e e oo memememcmcmcmoeee- + [cpu000: 82%]

TimeWarp mode
lets the user
enter the correct
passwords.

— AFL then finds
the bug in
seconds!

62

63

blgc’zk hat

LUSA 20138

FuzzExMachina
Findings
TimeWarp
Conclusion

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina B4

.
blgc}zkhat@’ ManZhtml Crashing Input

LUSA 20138

0O00B0BBOEERAO -e "\n\n\n\n\nYOU REALLY SHOULD BE USING ys.auto or
better yet -sploit

BUT IF YOU MUST USE $0 at least use /S instead of just nc.

Packrat now has an option to do just that:

packrat -n /0000000000OOOOOOS

sleep 4

usage (]

{

echo "Usage: ${0} [->Goes on like this for a bit, including CSS and more... (?)]

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina B7

“This program is rather buggy, but
in spite of that it often works.”
— man2html.c:11

68

69

blgc}:khaf Whatever Happened to the Bugs

LUSA 20138

Package Binary invocation Version Crash Type Status GitHub Stars

enscript mkafmmap @@ heap-bufter-overflow N/A
aircrack-ng wpclean -nvr @@ 1.2rc4 segmentation fault fixed 131
catimg catimg @@ 24.0 global-buffer-overflow 468

jpegoptim jpegoptim @@ 1.44 heap-buffer-overflow was missingin Arch 671
jhead jhead @@ 3.00 heap-buffer-overflow N/A
libpng pnm2png 1.6.34 stack-buffer-overflow 267

CFITSIO funpack @@ 3.430 segmentation fault ~ fixed N/A

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 70

bl£¢’=khat® Bug Reports

LUSA 20138

Date: Wed, 28 Mar 2018 20:51:01 +0000
To:Vincent Ulitzsch

Unfortunately, | just don't have time to work on it these days.

—————— Original Message ------

From: "Vincent Ulitzsch'

Sent: 2018-03-28 2:50:06 PM

Subject: Command Line Heap Bufferoverflow

> During my research, | have found a heap-buffer-overflow [..]

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 72

73

blgc}zkhat@’ Future Work

LUSA 20138

- Obviously, a trained human can still do a lot better.
— Let the machines take over!
- Add more repo backends
- Scale to GitHub?
- Fuzzing is still shallow. '
“We need to go deeper” o i

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 74

75

blgc}zk hat TL,DR

LUSA 20138

FuzzExMachina [FExM]

Automated fuzzing framewaork
Clever tricks up its sleeve

BYOB or fuzz distribution scale
Found numerous bugs and crashes

Free and open source

— https://github.com/fgsect/fexm

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 76

https://github.com/fgsect/fexm

77

blgc}zkhat‘@ Try out FExM Today

LUSA 20138

e Available today
e Would not have been possible without
o All the projects used in the repo
o Ben Stock, Tommi Unruh, rcQr, jfoote, zardus,
lcamtuf
o hack-the-beach.com
e Helpis always appreciated. ;]

— https://github.com/fgsect/fexm

Follow the White Rabbit Simplifying Fuzz Testing Using FuzzExMachina 78

https://github.com/fgsect/fexm

“Simple memory corruptions are still way
too widespread, even in popular software.”

“FExM automates, facilitates and scales
the fuzzing pipeline.”

“There is no excuse not to fuzz-test
software projects right from the start.”

— https://github.com/fgsect/fexm

https://github.com/fgsect/fexm

@ibags —
@vinulium

while (questions()); BEDmERU

char buf[18];
strncpy(buf,

"\n", sizeof(buf));
printf("%s’, buf);

— https://github.com/fgsect/fexm

https://github.com/fgsect/fexm

