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Power / EM side 

channel analysis
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Power analysis
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Some crypto algorithm
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Example (huge) leakage
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Data leakage Noise
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Signal processing (demo)

Raw trace

Processed trace
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Misalignment (demo)
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AES-128 first round attack
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Points of interest selection
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Data leakage Noise

Correlation, T-test, Difference of Means

Samples showing statistical dependency between 
intermediate (key-related) data and power consumption.
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Concept of Template Analysis
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Open Sample

Ciphertext
Keys Templates

Leakage
ModelMeasure

Closed Sample

Fixed Key Analysis

InputMeasure

Input

Learn (Profiling) Phase

Attack (Exploitation) Phase
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Key recovery
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Number of traces
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The actual process

Setup

Processing

Acquisition

Analysis
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Deep learning

background
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Deep Learning
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dog

dog

dog

cat

cat

cat

Data 
with labels
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Deep Learning
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machine
Cat (%)

Dog (%)

Error function

BACK-PROPAGATION 
ALGORITHM

Train a machine to 
classify these data

Data 
with labels
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Deep Learning
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Test the machine 
on new data

Train a machine to 
classify these data

Data 
with labels Cat (%)

Dog (%)

Trained 
machine
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Deep Learning
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Is classification 
accuracy good 

enough?

No

Yes

We are done!

Change 
parameters

Test the machine 
on new data

Train a machine to 
classify these data

Data 
with labels Trained 

machine
Cat

Machine = Deep Neural Network
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Input Layer 
(the size is 

equivalent to the 
number of samples)

Dense Layers
(classifiers)

Output Layer
(the size is 

equivalent to the 
number of classes)

Conv. Layers
(feature extractor + encoding)

The convolutional layers are able to detect the features 
independently of their positions

Convolutional Neural Networks (CNNs)
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Creating training/test/validation data sets

BLACKHAT 2018

samples HW = 5

samples HW = 7

samples HW = 3

samples HW = 4

…

features label

…

Leakage model
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Classification
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HW = 4

HW = 5

HW = 6

HW = 7

Key enumeration 
using output 
probabilities

(Bayes)0.65

0.15

0.05

0.08

0.01

0.02

0.01

0.02

0.02

Softmax (σ𝑝𝑖 = 1)

Trained Model

Trace (samples)



23

Deep learning on 

side channels 

in practice

BLACKHAT 2018
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Step 1: Define initial hyper-parameters (demo)

BLACKHAT 2018

HW = 0

HW = 1



25

Step 2: Make sure it’s capable of learning

BLACKHAT 2018

• Increase the number of training traces and observe the training and validation accuracy

• Overfitting too fast? 
• Training accuracy: 100% | Validation accuracy: low

• Neural network is too big for the number of traces and samples
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Step 3: Make it generalize

Make sure the training accuracy/recall is increasing

0.111 Validation recall stays above the minimum 

threshold value = model is generalizing

0.111 = 1/9 (9 is the number of classes – HW of a byte)

NN is learning 

from its 

training set

BLACKHAT 2018
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Step 3: Make it generalize

Regularization techniques:

 L1, L2 (penalty applied to the weights)

 Dropout

 Data Augmentation (+traces)

 Early Stopping

BLACKHAT 2018

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1
Linear Separation Good Regularization Overfitting

Low Training Accuracy
Low Validation Accuracy

Good Training Accuracy
Good Validation Accuracy

High Training Accuracy
Low Validation Accuracy
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Step 4: Key Recovery

In this analysis, we only need slightly-above coin flip accuracy!

BLACKHAT 2018
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Getting keys from 

the thingz!
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Piñata AES-128 with misalignment (demo)
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Bypassing Misalignment with CNNs

Neural Network: Input Layer > ConvLayer > 36 > 36 > 36 > Output Layer

Training/validation/test sets: 90000/5000/5000 traces of 500 samples

Leakage Model: HW of S-Box Out (Round 1) → 9 classes

Results for key byte 0:

Use Data Augmentation 

as regularization 

technique to improve 

generalization

BLACKHAT 2018
Number of traces
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Breaking protected ECC on Piñata

Supervised deep learning attack:

- Curve25519, Montgomery ladder, scalar blinding

- Messy signal

- Brute-force methods for ECC are needed if test accuracy < 100%

- Need to get (almost) all bits from one trace!

BLACKHAT 2018
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Breaking protected ECC

Unsupervised/Supervised Horizontal Attack: 60% success rate

Deep learning: 90% success rate 

Deep learning( + data augmentation): 99.4% success rate 

Data augmentation: 25k → 200k traces.

Misaligned traces

BLACKHAT 2018

4 Dense Layers 

(100 Neurons)

3 Conv Layers 

(10 filters)
Input

(4000)

Output

(2 Classes)

RELU TANH SOFTMAX
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Breaking AES with First-Order Masking (demo)

 Target published in 2013 (http://www.dpacontest.org/v4/)

 40k traces available

 AES-256 (Atmel ATMega-163 smart card)

 Countermeasure: Rotating S-box Masking (RSM)

BLACKHAT 2018
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Breaking AES with First-Order Masking

𝑥 ⊕𝑚
𝑦 ⊕𝑚

Combine data: (𝑥 ⊕𝑚)⊕ (𝑦 ⊕𝑚) = 𝑥 ⊕ 𝑦

Combine samples: 𝑡 𝑖 × 𝑡 𝑗

Brute-force 𝑖, 𝑗 → Quadratic complexity

Remove the relationship between 

power consumption (EM) and predictable data

BLACKHAT 2018

𝑥 ⊕𝑚 𝑦⊕𝑚

𝑖 𝑗
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Breaking AES with First-Order Masking

BLACKHAT 2018

Challenge: Training key == validation key

Correct key byte candidate

(good generalization)

Wrong key byte candidate

(poor generalization)

1/9
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Breaking AES with First-Order Masking

BLACKHAT 2018

Overfitting can be verified by checking where the NN is learning

Correct key byte candidate

(CNN learns from specific 

and leaky samples)

Wrong key byte candidate

(CNN overfits because it 

can’t distinguish leaky 

samples from noise)
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Breaking AES with First-Order Masking

Neural Network: Input Layer > ConvLayer > 50 > 50 > 50 > Output Layer

Training/validation/test sets: 36000/2000/2000 traces

Leakage Model: HW of S-Box Out (Round 1) → 9 classes

1/9

BLACKHAT 2018

Results for key byte 0:

The processing of 8 
traces is sufficient to 
recover the key
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1st cool thing

BLACKHAT 2018

This shouldn’t work
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2nd cool thing

BLACKHAT 2018

DL is up there with dozens of SCA research teams
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Wrapping up

BLACKHAT 2018
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I want to learn more!

BLACKHAT 2018

Deeplearningbook.org    introtodeeplearning.com           bookstores                       nostarch

?

By Colin & Jasper



43

Key takeaways

BLACKHAT 2018

• DL does SCA art + science and scales

• DL requires network fiddling, the bar is low, not yet at 0

• Automation needed to put a dent in embedded insecurity
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