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Introduction 
Automated Twitter accounts have been making headlines for their effectiveness at spreading 
spam and malware as well as influencing online discussion and sentiment. There have been a 
variety of methods published in previous work showing either how to create a Twitter dataset 
[4], [16] or techniques for finding potential bots from a previously shared or gathered dataset 
[20], [32]. However, we have yet to find a work that describes the entire process in detail, 
providing tools and techniques to other researchers interested in finding automated Twitter 
accounts. 
 
This paper details the techniques and tools we created to both build a large dataset containing 
millions of public Twitter profiles and content, as well as to analyze the dataset looking for 
automated accounts. By applying a methodical data science approach to analyzing our 
dataset, we were able to build a classifier that effectively finds bots at a large scale. In this 
work, we specifically look for automated accounts, not necessarily malicious automated 
accounts. Distinguishing benign automation from malicious automation is a topic for future 
work. 
 

2 



 

We then demonstrate how to pivot off discovered bots to find entire communities of connected 
bots, or “botnets.” This analysis is given through a case study detailing a large organized 
cryptocurrency spam botnet. 
 
We have open sourced our data collection system used to gather account, tweet and social 
network data to enable the community of security researchers to build on our work. This 
system allows researchers to quickly build a large Twitter dataset for use in future work. 
 
Finally, we aim to provide a narrative to our research, explaining why we chose various 
approaches. We then include a section at the end of the paper that highlights different 
techniques we tried that didn’t yield the expected results for the purposes of providing 
transparent research. 

Key Findings 
This paper presents the following key findings: 
 

● Using knowledge of how Twitter generates user IDs, we gathered a dataset of 88 million 
public Twitter profiles consisting of standard account information represented in the 
Twitter API, such as screen name, tweet count, followers/following counts, avatar and 
description. 

● As API limits allow, this dataset was enriched with both the tweets posted by accounts, 
as well as with targeted social network information (follower/following) information. 

● Practical data science techniques can be applied to create a classifier that is effective 
at finding automated Twitter accounts, also known as “bots.” 

● A case study detailing a large botnet of at least 15,000 bots spreading a cryptocurrency 
scam. By monitoring the botnet over time, we discover ways the bots evolve to evade 
detection. 

● Our cryptobot scam case study demonstrates that, after finding initial bots using the 
tools and techniques described in this paper, a thread can be followed that can result in 
the discovery and unraveling of an entire botnet. For this botnet, we use targeted social 
network analysis to reveal a unique three-tiered hierarchical structure. 

Current Landscape of Twitter Bot Research 
The dynamics of how users communicate on Twitter make it a fascinating area of both social 
and security-related study. In particular, the topic of building datasets based on content posted 
to Twitter and identifying automated accounts within a dataset are two areas we explore in this 
paper. 
 
[4] and [16] use the Twitter API to enumerate large datasets of users and their social networks 
to characterize attributes about the users and trends in the growth of Twitter’s user base. 
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[5] and [6] use information about how user IDs are generated to gather a sample dataset used 
to identify two large botnets. As noted in the “Finding Twitter Accounts” section below, our 
work follows a similar methodology when building the dataset, though we extend data 
collection to the previously unstudied 33-bit ID space. In addition to this, we examine the 
challenges and workarounds when studying user IDs generated with the 64-bit Snowflake 
format. 
 
Studies such as [5], [6], [18], [21], [32], [36] and [37] use attributes from gathered datasets to 
build classifiers which are used to identify automated accounts. Our work uses a similar 
approach to build a classifier that is used to find automated accounts within our gathered 
dataset. 
 
To discover organized botnets, studies such as [5] and [6] build classifiers with specific 
features to find related bots. Due to limitations imposed by Twitter’s API, it’s infeasible to study 
organized botnets across a large dataset using social network information. As a case study, 
our paper analyzes a large cryptocurrency scam botnet, showing how targeted social network 
information gathering can reveal the structure of the botnet. 
 
Our work provides an end-to-end look at both the techniques, tools and challenges of 
gathering large Twitter datasets as well as showing the process of applying a practical data 
science approach to discover automated bots. 
 
Finally, this work introduces our open-source data collection system [35], which can be used to 
gather public datasets suitable for use in further study by the larger research community. 

Building the Dataset 
The first part of our research involved creating a system that efficiently gathers large amounts 
of public Twitter data for analysis. At a high level, this process used the Twitter API [1] to 
gather an initial dataset of public profile information as shown in the “Finding Twitter Accounts” 
section. We then enrich the dataset by gathering the tweets associated with accounts. As 
needed, it’s possible to then fetch the social network connections for each account, such as 
the following/followers information. 
 
When creating a data collection system, we intentionally constrained ourselves to the rate 
limits imposed by the Twitter API so that the system could be used by other researchers 
without modification. This means that the data collected from this system used a single 
application with a single authenticated user.  
 
In the following sections, we describe techniques we used to maximize the efficiency of our 
data collection while conforming to the rate limits imposed by the API. 
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Finding Twitter Accounts 
Fetching public Twitter profiles is the first step toward building our dataset. The Twitter API 
represents high-level profile information as user objects. User objects contain fields including 
the profile’s screen name, tweet count, followers/following counts, avatar and description [2]. 
 
Our goal is to find accounts as efficiently as possible. That is, to maximize the rate in which 
new accounts are discovered while still conforming to the imposed API limits. In addition to 
this, where possible, we aim to create a uniform, random sample of accounts that is 
representative of the larger Twitter ecosystem. 
 
Enumerating user accounts first relies on an understanding of how Twitter generates user IDs. 

How Twitter Assigns User IDs 
Twitter first assigned user IDs as sequential 32-bit unsigned integers from 1 to 2^32 [4]. This 
range has been used in previous studies such as [5] and [6] when enumerating user accounts. 
In the “33-Bit User IDs” section below, we show that our data gathering discovered that this 
sequential ID assignment continued into the 33-bit space. 
 
In 2013, Twitter announced [7] that account IDs would transition to a new 64-bit format 
generated by a system called Snowflake. Initially introduced in 2010 [8], Snowflake had 
previously been generating IDs for tweets, but was being transitioned to generating IDs for 
most (if not all) Twitter objects. 
 
Snowflake IDs have the following format: 
 

● 41 bits: The timestamp - number of milliseconds since a custom epoch [27]  
● 10 bits: Node number - a unique number to identify the host that generated the ID 
● 12 bits: Sequence number - a rolling sequence number used by each host 

 
In the blog post [7], Twitter scheduled the switch to Snowflake IDs for October 2013. The 
earliest 64-bit ID found in our dataset was created in early 2016, suggesting a later transition 
date. This also suggests that, while the exact cause of extending account IDs into the 33-bit 
unsigned integer space is unknown, it’s possible that the 33-bit ID generation served as a 
transition period both for Twitter to move to the new ID format, as well as for client libraries to 
adapt to the new, longer ID format which was known to cause inconsistencies for certain 
languages [31]. 
 
Using this knowledge of account ID generation, we gathered the account dataset using two 
separate methods: account ID enumeration and hooking into the Twitter sample tweet stream. 
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32-Bit User IDs 
Twitter offers a variety of API endpoints to fetch account information. One of the most efficient 
endpoints is users/lookup [3], which offers the ability to submit 100 possible user IDs or 
screen names per request and receive the fully populated user objects for existing accounts. 
This API endpoint has a rate limit in place which, at the time of writing, allowed an 
authenticated user to submit 900 requests over a 15-minute window. This means that by 
finding a way to reliably generate candidate user IDs, this endpoint can be used to perform 8.6 
million ID lookups per day. 
 
As mentioned in the previous section, user IDs were first generated as sequential unsigned 
32-bit integers. This makes it easy to create a uniform, random sampling of the entire ID space 
by generating a percentage of candidate IDs and submitting them against the users/lookup 
method. 
 
Having a uniform sample set across the entire 2^32 bit ID space provides a large corpus of 
account data that can be used to discover groups of bots created around the same time. For 
example, previous work from Echeverria [5] and [6] was successful at finding large botnets 
sourced from a 1 percent random sampling of this available ID space. 
 
During the course of our research, we enumerated a random 5 percent sampling over the 
available ID space. Similar to the work from [6] the following chart shows the density of 
accounts in this available space, using buckets of 1 million account IDs and colored by the 
year the account was created. 
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At an average account density of 32 percent, this yielded a uniform random sample of 66 
million accounts. 

33-Bit User IDs 
Previous work had only discussed account IDs in the 32-bit unsigned integer space; however, 
during our account gathering process, we also discovered that the use of sequential IDs 
continued throughout 2016 with IDs extending into the sequential 33-bit unsigned integer 
space. 
 
We extended our 5 percent account sampling to include the space between 4*10^6 and 
5*10^6, yielding roughly 3 million new accounts largely created between 2015 and 2016. 
During our data gathering, we did not find any accounts with an ID greater than 5*10^6. 
 
The following graph shows the ID space density we recorded in this ID range: 
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Snowflake IDs 
The introduction of the Snowflake ID format makes it difficult to enumerate accounts 
sequentially, since there are multiple different pieces of information that would need to be 
guessed. In the “Approaches that Didn’t Work” section, we describe the results of our attempts 
to enumerate Snowflake IDs by analyzing our existing ID corpus. 
 
Since enumeration isn’t feasible, we have to take a different approach by letting the user 
information come to us by hooking into Twitter’s tweet stream. 

Using the Tweet Stream 

Twitter offers multiple different streams, which are API endpoints that allow clients to connect 
and receive real-time tweet objects filtered and sampled using various parameters. While most 
of the streaming endpoints are reserved for paid enterprise access, two of the streaming 
endpoints, statuses/sample and statuses/filter, are available to all applications. 
 
For our research, we connected to the statuses/sample endpoint, which provides a “small 
random sample of all public statuses” [9]. The tweet objects returned in this stream contain the 
full user object of the account that created the tweet. 
 
While in our case we chose to use the statuses/sample endpoint, the statuses/filter 
endpoint can be used to support targeted research around specific events through hashtags or 
keywords. This is also useful, for example, to find tweets containing links by filtering on the 
term “http.” 
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When building a dataset, it’s important to remember what biases are being included. As an 
example, we note that by retrieving accounts through the Twitter stream, this data is biased 
towards users who have tweeted very recently. When building our classifier in the “Classifying 
Bots at Scale” section below, we do not use how recently an account has tweeted as an 
attribute of bot behavior. We more comprehensively address potential limitations in the dataset 
in the “Limitations, Considerations and Other Discussion” section later in the paper. 
 
During the course of our research, we gathered 19 million accounts via the streaming API, 
averaging approximately 940,000 accounts per day. 

Enriching the Dataset 
After gathering the high-level account information, the next step is to enrich the dataset with 
both the content (tweets) and the social network information (how accounts are connected). 
 
While it’s possible to predict with a certain degree of confidence whether or not an account is a 
bot using just the account information provided in the user object, there are other attributes 
that are only available by analyzing the tweet content. Additionally, gathering the social 
network information helps identify directed connections between bot accounts, as well as 
identifying potential communities, also known as "botnets." 

Gathering Tweets 
The first step in the data enrichment process is gathering the tweets for an account. The 
statuses/user_timeline endpoint [10] can be used to fetch the latest 3,200 tweets from 
an account’s timeline. 
 
However, this endpoint only returns 200 tweets per request, and is rate limited to 1,500 
requests per rate limit window. Since this method only accepts a single screen name or user ID 
per request, this causes the tweet collection process to be much slower than the account 
collection with just 144,000 lookups per day. 
 
To help make tweet collection as efficient as possible, we applied the following rules when 
fetching tweets for the accounts in our dataset: 
 

● Only fetch tweets for users with more than 10 tweets published 
● Only fetch tweets for users who don’t have their account set to “protected” 
● Only fetch tweets for users who declare English as their language 

 
In addition to these, we only fetched the first 200 tweets for each user. We determined that, for 
our research, the latest 200 tweets would be a large enough sample size for determining if the 
account was automated, as well as what type of content the account published. 
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We can also use the tweets to help discover new user accounts. Tweet objects contain the 
account IDs for any mentioned users. Additionally, if the tweet is a reply to another tweet, the 
original account ID is also included in the in_reply_to_user_id field. These extracted IDs 
can be sent back into the users/lookup process to gather the full accounts of users found in 
tweets. 
 
During the course of our research, we gathered tweets for 3.1 million accounts, resulting in a 
dataset of 576 million tweets. 

Fetching Replies 

If the fetched tweet is a retweet, then the original tweet is included in the response object. 
However, if the tweet is a reply, the response only specifies the original tweet ID. Some 
characteristics of bot accounts apply to the relationship between the published reply and the 
original tweet, such as how quickly the reply was created. In order to analyze the relationship 
between the reply and the original tweet, we needed to fetch the original tweet. 
 
To do this, we can use the statuses/lookup [11] endpoint. This method has the same rate 
limits as the users/lookup method used earlier in the account ID enumeration process. 

Mapping the Social Network 
One of the goals of our research was to explore how bot accounts are controlled and how they 
connect to each other. For example, if accounts tweet identical content at roughly the same 
time, then we can infer with a degree of confidence that the accounts are controlled by the 
same entity. However, another way to group accounts is by analyzing their social network 
connections. 
 
Twitter tracks directional connections in the form of “follow”s. The friends/ids [12] and 
followers/ids [13] API endpoints can be used to retrieve the account IDs of who the 
targeted account is following, or who is following the account. These endpoints return IDs in 
groups of 5,000, which can then be used with the users/lookup endpoint to retrieve the full 
account information. This process can then be repeated for each new connection, resulting in a 
network of accounts that are considered an n-degree connection to the original account. 
 
Once these connections are retrieved, a directional graph can be built to further analyze and 
explore using specialized graph analysis tools like Gephi [14] or Neo4j [15]. As part of this 
research, we’ve open sourced a script, crawl_network.py, [35] that creates the social graph 
to a configurable degree for a given account and exports the results in GEXF format. 
 
The graph below demonstrates this output, showing how a 1-degree crawl of the social 
network for a known “fake follower” (a bot account that exists to follow other accounts in order 
to artificially inflate those accounts’ popularity) can discover a large network of thousands of 
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other fake followers (black nodes) highly connected to potentially legitimate user accounts 
(green nodes). 
 

 
 
During our research, both endpoints were rate limited to only allow 15 requests per 15-minute 
rate limit window. Previous research [16] attempted to map the entire Twitter social graph by 
finding systems that had been previously whitelisted from Twitter’s API rate limits. For our 
research, we explicitly wanted to build a system that gathers data conforming to the normal 
API rate limits. This means that the existing rate limits on these endpoints make gathering 
social network connections at a large scale impractical due to the time requirements. 
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However, gathering social network information can still be very useful when applied in a 
targeted fashion. For example, once a bot is identified, the bot’s social network information can 
be gathered to find similar connected accounts, resulting in a network that could be a potential 
botnet. An application of this targeted network analysis to discover an organized botnet can be 
found in the “Case Study: Cryptocurrency Spam Botnet” section below. 
 
Targeted social network gathering can also be useful in discovering bots designed to artificially 
inflate follower counts. These bots, called “fake followers,” are used to increase the number of 
followers for an account, making the account seem more popular than it actually is. The New 
York Times published an article [17] that demonstrated patterns of bot behavior when viewing 
the account creation dates for followers over time. 

Rate Limit Summary 
The previous sections explain the various measures we took to gather account information as 
effectively as possible, however, the output of the system is still largely determined by the rate 
limits in place on the APIs. 
 
The following chart summarizes the rate limits in place for the various API endpoints used 
during our data collection: 

 

System Architecture 
To enable security and academic researchers to reproduce our results or perform their own 
research on large-scale public Twitter datasets, we’ve open sourced our data gathering system 
[35], which uses the techniques detailed above to efficiently gather accounts and tweets. 
 
The following architecture diagram shows the components of the data gathering system: 
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This system is divided into two separate processes: an account collection process 
(collect.py), and a tweet collection process (collect_tweets.py). The final information is 
saved in compressed JSON files in NDJSON format. High-level account metadata is also 
saved in a database, which can be used for summarized analytics. 

Anatomy of a Twitter Bot 
After gathering the initial dataset, we started the process of identifying bot accounts. To do 
this, we asked the question “what attributes would make an account look suspicious?” We 
then took these characteristics and manually verified a small number of accounts to see if our 
decisions proved effective in finding bots. Then, in the “Classifying Bot Accounts at Scale” 
section below, we construct a classifier to more effectively identify bots across our dataset. 

Identifying Heuristics 
We divided the attributes of an account into three categories: 
 

● Account Attributes - These are attributes in the user object, including the number of 
tweets, likes, following/follower count, screen name and more 
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● Content - The text of the created tweets 
● Content Metadata - The metadata for created tweets, including time-based and 

location-based information 
 
A full list of the attributes we included can be found in the following table: 
 

Heuristic  Category 

Number of digits at the end or beginning of the screen name  Account attributes 

Entropy of the screen name  Account attributes 

Ratio of followers/following  Account attributes 

Number of likes relative to account age  Account attributes 

Number of tweets relative to account age  Account attributes 

Average number of users mentioned in a tweet  Content 

Average number of unique accounts being retweeted  Content 

Number of unique sources  Content 

Number of tweets with the same content per day  Content 

Percentage of tweets with URLs  Content 

Ratio of tweets with photos vs. just text  Content 

Average number of hashtags in tweet  Content 

Number of unique languages detected in tweets  Content metadata 

Number of tweets per day, relative to account age  Content metadata 

Average number of tweets per day  Content metadata 

Average time between tweets  Content metadata 

Average hours tweeted per day  Content metadata 

Average “distance” of account age in retweets/replies  Content metadata 

Average distance between geolocation-enabled tweets  Content metadata 

 
 
It’s important to note that these aren’t the only attributes we could have considered. There 
have been studies such as [36] and [37] that used these and other attributes when studying 
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automated Twitter accounts. The attributes that we studied were areas we felt would lead to 
effective bot detection, but we encourage researchers to explore new attributes which may be 
even more effective. 
 
The next sections briefly explore the various attributes and why we considered them useful 
when finding bots. 

Account Attributes 

Account attributes, such as the number of tweets or likes, can be useful for identifying a bot 
when compared to the length of time the account has been active, as well as when compared 
to other attributes. Some sources such as [34] use account information as a primary source 
when identifying fake followers. 
 
Additionally, we observed cases where accounts had no activity other than liking many tweets 
in a short period of time, raising the possibility that the account may be an amplification bot 
designed to artificially inflate the popularity of tweets. 
 
We also analyzed attributes of the screen name, such as the amount of entropy or the number 
of digits at the beginning or end. This helps find bots that have algorithmically-generated 
screen names, which is often required when generating large amounts of accounts. 

Content 

Once tweets for an account are gathered, they can be analyzed to identify bots that aim to 
spread spam and malicious links to unsuspecting users. While there have been studies such as 
[18] that analyze the language structure and sentiment to discover bots that influence online 
discussion, our analysis focused on attributes that were more straightforward to calculate. 
 
Many of the attributes we analyzed were focused on the number or inclusion of different 
elements within a tweet. For example, we averaged the number of tweets each account 
created that includes a URL. This may be indicative of a user who actively shares links, tweets 
that were created by a third-party application, or potentially a bot sharing malicious links. 

Content Metadata 

One of the most important types of attributes to consider when analyzing an account for bot 
activity is the metadata around posted content. This metadata can identify suspicious patterns 
when aggregated over all of the account’s tweets. 
 
A great example of this is time. For example, the average Twitter user will likely only tweet 
during certain hours of the day, whereas bots are able to tweet throughout the entire day. 
Averaging the number of hours per day an account is active may help identify automated 
accounts. 
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The following graph illustrates the differences when comparing the distribution of tweets over 
time for both an individual and a bot: 

 

 
 
This same analysis can be performed on other tweet relationships, such as how quickly 
consecutive tweets are posted, how quickly replies are generated, or how quickly a tweet is 
retweeted. 
 
Another type of metadata used for identifying bots is geolocation. While adding geolocation to 
tweets is optional, there have been cases of bots doing this, likely an attempt to evade 
detection. The “Star Wars” botnet in [5] was initially discovered by examining accounts with 
tweets claiming to originate from a uniformly distributed rectangular area, including uninhabited 
areas. 
 
In addition to the location from where the tweets were posted, another pattern to analyze is the 
average distance between tweets. If bot creators always update their geolocation for every 
tweet, the average distance between these tweets may be much higher than a normal user. 

16 



 

Classifying Bot Accounts at Scale 

Dataset 
The dataset we used in our project comprised accounts labeled as genuine (labeled genuine 
accounts) or social spam bots by Cresci et. al in 2016 along with their tweets [20]. In addition, 
we included the account metadata and tweet data associated with accounts that were involved 
in a cryptocurrency giveaway scam (labeled crypto-giveaway bots) discussed in the “Crawling 
Botnets” section below.  
 
Last, we have the 42 million unlabeled accounts along with their tweets that were compiled by 
using Twitter’s APIs. Across each of the groups, there are 15,636 accounts and 6,389,009 
tweets. Below you can find a breakdown of each of the different groups.  
 

 
 
Goals and Objectives 
In the following sections, we will:  

1. Experiment with a few classification algorithms and show how they perform on a 
labeled dataset without any hyperparameter tuning 

2. Illustrate how performance changes when training on one class of bots and predicting 
on another when using the best model  

3. Determine which combination of features are most important 
4. Gain an understanding of the accounts that our model believes to be most likely to be a 

bot through the use of the millions of accounts that we compiled  
 

Why Use Machine Learning 
When we used the attributes listed above to create heuristics, we had to manually examine 
outliers to determine if the attribute would be effective at finding bots. However, this process 
doesn’t scale to the millions of accounts in our unknown dataset or even the thousands of 
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accounts in our labeled datasets. Instead, we leveraged a few machine learning algorithms, 
using a subset of the attributes listed in the table above to build features which are used to 
train a classification algorithm to determine whether an account is a bot. The final list of 
features is in Section A of the Appendix. 
 
Fitting a model that can be used for classification with our attributes has the benefit of viewing 
an account through the lens of a combination of all our features, not each individually. Some of 
our features are effective at identifying bots when combined with other features, but would 
have a very high false-positive rate if used in isolation.  
 
For example, the percentage of tweets with links had a mixture of both automated accounts 
and legitimate news sources or content creators. These models can optimize how much 
emphasis, or weight, is put on each feature to help increase the accuracy of bot detection. 
There is a substantial amount of literature showing that approaches relying on labeled 
(supervised) [19] and [20] and unlabeled datasets (unsupervised) [21] have proven to be 
successful in classifying bots and/or automation on Twitter. 

Classification via Account Metadata 

Exploratory Data Analysis 
 
Prior to investigating which algorithm would perform the best on our data, we explored each of 
the predictors we detailed above and how they differed among each of the groups. In terms of 
the predictors that measure activity (e.g., number of tweets per day), the genuine accounts had 
the highest averages by far. Those genuine accounts averaged 3.78 favorites per day and 11.3 
tweets per day.  
 
For both sets of bots, their averages were at least a degree of magnitude lower. In terms of 
attributes associated with screen names, the bot accounts showed some distinct differences. 
On average, both sets of bot accounts had screen names with higher Shannon entropy; 
however, only the crypto-giveaway bots had a distinguishable number of characters at the end 
of the screen name. 
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Model Training and Evaluation 
Using the following features:  
 

● favorite_rate - ratio of favorites to account age 
● ratio_followers_friends - the number of followers divided by the number of 

friends or accounts the user is following 
● is_geo_enabled -  binary feature of whether or not geo-coordinates are accessible  
● tweet_rate - ratio of number of tweets to account age 
● is_default_profile - binary feature of whether or not the user has altered the 

default profile 
● screen_name_entropy - Shannon entropy of a user’s screen name 
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● numbers_at_end_of_screen_name - number of numeric characters at the end of a 
user’s screen name 

● is_protected - binary feature of whether or not the account is protected  
● numbers_at_beginning_of_screen_name - number of consecutive numeric 

characters at the beginning of a user’s screen name 
● is_verified - binary feature of whether or not the account is verified or not 

 
We trained and compared five machine learning algorithms via the Machine Learning in R (mlr) 
package [22]. The five algorithms we chose were AdaBoost, Logistic Regression, Decision 
Trees, Random Forest and Naive Bayes.  
 
To evaluate each of the algorithms, we measured their accuracy, precision, sensitivity, 
F1-score, area under ROC curve (AUROC), Cohen’s kappa coefficient and Brier score. By 
using each of these metrics, we can assess how well each model identifies both bot and 
genuine accounts. 
 
To compute the aforementioned metrics, we used 10-fold cross-validation. Cross-validation is 
a resampling procedure used to compare the performance of machine learning algorithms to 
each other or of those with different hyperparameters. Cross-validation helps assess how the 
model will perform on an unknown dataset and provide insight to if and how our model is 
overfitting the data.  
 
In our case, we shuffled the data randomly and split it into 10 equal groups. We trained a 
model using nine of the slices of data and then evaluated it on the remaining slice. We 
repeated this process to evaluate each of the 10 groups. Each round we computed metrics, 
and then after the 10th round, we took the average of each metric. 
 
Because we had two sets of bot accounts, we set up five tasks where we utilized the genuine 
accounts and a different combination or proportion of the social spam bots and 
crypto-giveaway bots. We set up these tasks to measure the effect of the sample size on the 
chosen algorithms and to evaluate how having a mixed set of bot accounts affected prediction. 
The full results from the 10-fold cross-validation for each task are in Section B of the Appendix.  
 
In summary, the Random Forest classifier proved to perform the best irrespective of the bot 
data used for training. It consistently had an accuracy of approximately 98 percent and an AUC 
of .99. Also its Brier score was the lowest across each task.The Naive Bayes classifier proved 
to be the worst, as expected. It was the only model that didn’t achieve at least a 90 percent 
accuracy. 
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Using the metrics from cross-validation, we knew that the Random Forest model was the 
optimal choice; however, we wanted to assess how the model would perform if trained on one 
set of the bot data and then predicted on the other. We knew that each sample wasn’t a 
representative sample of bots in the Twitter eco system, but we wanted to find out what we 
considered to be our test accuracy on known bots.  
 
To do so, we trained three Random Forest models:  

1.  A dataset of the genuine accounts and the social spam bots 
2.  One which had the genuine accounts and a random sampling of 4,912 

crypto-giveaway bots 
3. Another  that contained the genuine accounts and entire set of crypto-giveaway 

accounts.  
 
We then used the three models to predict on the other class of bots.  
 
In our case, the output of the Random Forest model is the probability that an account is a bot. 
Because we don’t have any information in regards to the penalty or cost associated with either 
type of classification error, we use 0.5 as the threshold for whether an account is a bot or not.  
 
With that threshold, we achieved an accuracy of 80 percent using the model trained with the 
social spam bots to predict on the crypto-giveaway bot accounts. The model trained on an 
equivalent number of crypto-giveaway accounts performed far worse by comparison with an 
accuracy of 49 percent on the social spam bots; however, when trained using the entire set of 
crypto-giveaway bots, we were able to achieve a 53 percent accuracy. One source of this 
minor increase in accuracy could be the increased amount of bot accounts trained on.  
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Results on Unknown Accounts 
Utilizing a dataset comprised of genuine accounts and all the bot accounts from each class of 
bots, we fit a Random Forest model once more. With this model, we then predicted the 
probability of whether or not 42 million accounts that we compiled utilizing the Twitter API were 
bots. To understand what our classifier finds important, we examined the differences between 
the accounts that had the highest probability to be a bot (top 20 percent) and the accounts 
with the lowest probability to be a bot (bottom 20 percent). 
 
As we hoped, the bottom 20 percent contained the vast majority of the verified accounts in our 
dataset which is why the ratio_followers_friends is significantly higher. Verified 
accounts belong to users involved in media, sports, music, acting or other areas of interest 
[33]. Those accounts typically have a very high ratio of followers to friends. Upon further 
investigation of the accounts in the top 20 percent percent, our fitted model outputs a higher 
probability that older accounts with very little activity is a bot, rather than those with more 
activity.  
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Classification via Tweet Behavior, Tweet Content and Account  

Feature Selection 
In the previous section, we only used 10 features based on account metadata to try to classify 
accounts. With such a quantity of features, the risk of overfitting (i.e., the chance that our 
model is fit too closely to our training data and may not generalize well when it encounters new 
data), is most likely smaller than the case in which we have 22 features (described in Section A 
of the appendix). Moreover, there is the potential that more of our features are highly correlated 
and/or don’t provide us much additional signal given other features in the model. Generally, 
performing feature selection allows more interpretable models, shorter training times, and less 
data to keep around.  
 
There are several methods to select a subset of features. Our method of choice was recursive 
feature elimination through the use of Random Forests. We implemented this using the caret 
[21] package. Put simply, this approach removes features recursively and builds a model on 
the features that remain. It uses the metric of importance (e.g., accuracy, root mean squared 
error, AUC, etc.) to identify which feature or subset of features contribute the most and ranks 
them. 
 
Utilizing a Random Forest model to determine the best set of features, we found that on the 
Cresci dataset, we were able to achieve an AUC of 0.99 by only using favorite_rate, 
is_default_profile, avg_reply_id_distance, avg_distinct_hours_tweeted and 
avg_num_users_mentioned_in_tweets. However, our accuracy rate on the 
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crypto-giveaway accounts was only 83 percent. During feature selection, we are optimizing for 
the AUC on the training data; however, as discussed earlier, if the accounts we are predicting 
on behave differently, we will see much worse results.  

Results on Unknown Data 
The sample of data that we used in classifying accounts using the five features above was a 
sample of 692,906 accounts that had tweeted in the last 90 days. We did this to replicate the 
approach outlined before, which only used account metadata, but this time, we restricted our 
predictions to recently active accounts. 
 
Using the five features from above, we found significant differences in the averages of each of 
the features when comparing the top 20 percentile of accounts deemed to be bots by our 
model and the bottom 20 percentile. Those accounts in the top 20 percentile were more likely 
to have a default profile, tweet over more hours and favorite fewer statuses.

 

Limitations, Considerations and Other Discussion 
Because our dataset only consists of an account’s last 200 tweets, we are only able to get a 
glimpse into their real behavior. It’s possible for an account to exhibit behaviors of a normal 
user or behaviors that would only be possible through automation at different times.  
 
As a result, our findings in the previous sections represent an interpretation of what the 
account looked and behaved like recently. If we considered an account’s entire timeline, we 
could more accurately determine which accounts were behaving like bots. With that data, it is 
also possible to determine shifts in behavior as well. 
 
An additional point of consideration is that our dataset of bot accounts consists of only two 
groups of bots -- one of which is made up of accounts from two years ago. Those sets of 
accounts are not representative of all bot accounts that may exist on the Twitter platform. Our 
results show that our accuracy significantly decreases when the algorithm sees a type of bot 
that is different in some way from the accounts included during training.  
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Another point that merits discussion is the cost of a false positive. We aren’t privy to the 
support costs or any other effects that Twitter must take into account when trying to predict 
whether an account is a bot or not. Having a greater understanding of those costs would have 
an impact on the thresholds of what is or isn’t a bot. Optimizing for cost would most likely 
affect the accuracy, precision and sensitivity for any method. 

Crawling Botnets 
After using these approaches to find initial sets of bots, the next steps are to determine if the 
bots are isolated or if they are part of a larger botnet controlled by a single entity. 
 
Botnets can be structured in different ways. For example, the Star Wars [5] and Bursty [6] 
botnets have a flat structure where each bot showed the same behavior. Alternatively, some 
botnets such as a diet-spam botnet discovered by Symantec [24] contain a more organized, 
multi-tiered structure with bots dedicated to different roles such as publishing spam, tweet 
amplification and fake followers. 
 
The following section is a case study about a botnet we discovered that uses a multi-tiered 
structure similar to that of the diet-spam botnet to spread cryptocurrency scams. 

Case Study: Cryptocurrency Scam Botnet 

Initial Discovery 
In late May 2018, we discovered what appeared to be automated accounts spoofing otherwise 
legitimate cryptocurrency Twitter accounts in an effort to spread a “giveaway” scam. 
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The typical operation of the bots involved first creating a spoofed account for a legitimate 
cryptocurrency-affiliated account. This spoofed account would have (what appeared to be) a 
randomly-generated screen name, and would copy the name and profile picture of the 
legitimate account. 
 
To spread the spam, the bot would reply to a real tweet posted by the legitimate account. This 
reply would contain a link inviting the victim to take part in a cryptocurrency giveaway. 
 
As discussed in the next “Evolution of the Botnet” section, this botnet used several methods to 
evade detection over the few months we were periodically monitoring it. However, early 
iterations of the botnet could be matched using basic signatures. We used these signatures 
with the search/tweets [25] API endpoint to gather the initial list of 7,250 bots to be used in 
exploratory data analysis and building our classifier. 
 
We polled the same API endpoint on multiple occasions throughout June 2018 to determine if 
the botnet was still active, which resulted in a collection of 12,000 spam generating bots. 
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The initial set of bots provided an indication of what type of spam the botnet was publishing, 
but didn’t reveal how the bots are organized and managed. To map out the structure behind 
the bots, we gathered a final small collection of bots to be used when performing a recursive 
crawl detailed in the “Mapping the Network” section below. 

Evolution of the Botnet 
Throughout the course of our research, we observed the accounts responsible for spreading 
the malicious links would use increasingly sophisticated techniques to avoid automated 
detection. Specifically, we observed the following techniques being used: 
 

● Using unicode characters in tweets instead of traditional ASCII characters 
● Adding various white spaces between words or punctuation 
● Transitioning to spoofing celebrities and high-profile Twitter accounts in addition to 

cryptocurrency accounts 
● Using screen names that are typos of a spoofed account’s screen name 
● Performing minor editing on the profile picture to avoid image detection 

 
These attempts to thwart detection demonstrate the importance of analyzing an account 
holistically, including the metadata around the content. For example, these accounts will 
typically tweet in short bursts, causing the average time between tweets to be very low. 

Mapping the Network 

Mapping Followers 

Once we determined how the bots operate, we began analyzing the structure of the botnet. We 
noticed that many of the bots followed what appeared to be the same accounts. We consider 
these accounts to be “hub accounts,” since many bots follow them. It’s unclear how these hub 
accounts directly contribute to the botnet operation, other than being a set of centralized 
accounts many of the bots follow. It’s possible that these accounts aren’t affiliated with the 
botnet and are randomly chosen accounts which the bots follow in an effort to appear 
legitimate.  
 
We then performed a recursive search, gathering which accounts each bot followed. Then, for 
each of these hub accounts, we gathered all their followers, checking to see if the followers 
were a cryptocurrency scam bot. If we determined it was a bot, we recursively searched the 
accounts that bot was following since these may be new hub accounts. 
 
This allowed us to enumerate around 2,600 additional bots which were found to be spreading 
malicious links claiming to be cryptocurrency giveaways. Mapping these relationships revealed 
two notable loosely connected clusters. 
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The first cluster we discovered mostly follow hub accounts, creating a sparse community of 
bots all following the same accounts. The following graph maps these connections, with each 
hub account displayed as a highly-connected node: 
 

 
 
The second cluster takes a different approach. The accounts in this cluster are highly 
connected in a mesh-like structure, where each bot follows other bots in the same community: 
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Mapping Amplification Bots 

Amplification bots are accounts that exist to like tweets in order to artificially inflate the tweet’s 
popularity. To make the cryptocurrency scam appear legitimate, we noticed that amplification 
bots were used to increase the number of likes for the tweets sent by bots. 
 
The only activity these amplification bots had were liking the cryptocurrency scam tweets from 
a variety of bots: 
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We wanted to map out the relationships between amplification bots and the bots they support. 
To do this, for every tweet from the cryptocurrency scam bots, we determined which accounts 
liked the tweet (see the “Approaches that Didn’t Work” section for difficulties we encountered 
when performing this mapping). If the account had the same characteristics of an amplification 
bot, we used the favorites/list [26] endpoint to enumerate every status the amplification 
bot has liked. 
 
Searching through the other statuses liked by amplification bots helped us discover previously 
unknown cryptocurrency scam bots. Each time we discovered a new scam bot spreading 
malicious links, we performed the same social network gathering as above, looking for even 
more connected bots. 
 
This resulted in a three-tiered botnet structure consisting of the scam publishing bots, the hub 
accounts (if any) the bots were following, and the amplification bots that like each created 
tweet. The mapping shows that the amplification bots like tweets from both clusters, binding 
them together. This final mapping is shown below, where “following/follower” relationships are 
shown as black edges and “like” relationships are shown in green: 
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At a high level, this case study demonstrates that, after finding initial bots using the tools and 
techniques described in this paper, a thread can be followed that can result in the 
unraveling of an entire botnet. 
 
While gathering social network connections can be expensive due to the rate limits in place at 
the time of this writing, gathering this information in a targeted fashion can be very effective in 
identifying new potential bot accounts after initial sets of bots have been gathered. This type of 
network analysis also helps reveal the structure of the botnet, helping provide characteristics 
that can be used to identify similar botnets in future work. 

Approaches That Didn’t Work 

Snowflake ID Backtracking 
The “How Twitter Assigns User IDs” section above describes the transition to 64-bit IDs 
generated by a system called Snowflake. These IDs are created from a timestamp, a worker 
number and a sequence number. 
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Our goal was to determine if we could use the IDs we previously gathered via streaming to 
generate valid Snowflake IDs that could then be sent to the users/lookup endpoint to find 
new accounts. The idea is that new accounts are likely created frequently, so for each ID, we 
could decrement the sequence number and create a new candidate ID that would be a 
possible account ID.  
 
To do this, we split each ID into the different components and measured the frequency of 
values seen. The following charts show the distribution for worker numbers and sequence 
numbers. 
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These charts show that, while there are multiple bits reserved for these values, the actual range 
of values is fairly predictable. This suggests that even just predicting random Snowflake values 
may be possible by choosing a random timestamp in the valid date range, picking a worker 
number in the observed range, and starting with sequence number 0. 
 
However, for our approach, we opted for an even simpler solution. Since the distribution of 
sequence numbers drops significantly, we can infer that the sequence number is reset for each 
new timestamp. This is further confirmed in the (now deprecated) Snowflake source code [27]. 
 
To generate our candidate IDs, we filtered our existing Snowflake ID dataset to those with a 
sequence number greater than 0. Then, we generated new IDs for each sequence number until 
we reached sequence number 0. Finally, we submitted the generated IDs to the 
users/lookup endpoint to potentially gather new accounts. 
 
While this resulted in finding some accounts, the overall success rate was well below 1 
percent. The results suggest that workers generating snowflake IDs are responsible for 
generating the IDs for many types of Twitter content in addition to just accounts. 
 
Since we could assume that there will be many more tweets than accounts, we changed our 
approach to use the statuses_lookup endpoint instead of the users/lookup endpoint. 
This increased the success rate dramatically to approximately 13 percent, proving the method 
to be effective at finding users who have recently tweeted, since each tweet object contains 
the original user object. 
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However, our goal was to find accounts that were created around a particular date and, to that 
end, this approach was unsuccessful. 

Finding Who Favorited a Tweet 
As mentioned in the “Crawling Botnets” section, a common botnet structure includes 
amplification bots whose sole function is to like tweets containing malicious content in an 
attempt to make the content appear legitimate. It’s often the case that these accounts are the 
only links between other spam-creating bots, making them useful for researchers. 
 
At the time of this writing, we were unable to find a published API endpoint for determining 
which accounts liked a particular tweet. This behavior currently only exists for discovering 
retweets of a particular status using the statuses/retweeters/ids endpoint [28]. 
 
For our case study, in order to determine which accounts liked a particular status, we had to 
rely on an unofficial API endpoint, which is not ideal when performing large-scale research. The 
solution could be to create a new API endpoint, e.g. statuses/favorites/ids or similar. 

Next Steps 
During the course of this research, which spanned May 2018 through July 2018, Twitter 
announced that they are taking more proactive action against both automated spam and 
malicious content [29], identifying and challenging “more than 9.9 million potentially spammy or 
automated accounts per week.” In a follow-up blog post, Twitter also described their plans to 
remove accounts that had been previously locked due to suspicious activity from follower 
counts [30]. 
 
We’re hopeful that these increased investments will be effective in combating spam and 
malicious content, however, we don’t consider the problem solved. The case study presented 
in this paper demonstrates that organized botnets are still active and can be discovered with 
straightforward analysis. 
 
During this research and in our conversations with Twitter when sharing our analysis, an area 
that emerged as being important to any future research was the difference between the view of 
Twitter built through its API and what users see in the user interface (UI). According to the 
company, Twitter is actively working to hide malicious content from being visible in areas like 
search and conversations, though the content can still be visible via the API. Twitter cites that 
‘less than 5%’ of accounts are spam related. 
 
Differences between data exposed via the UI and API, and the security ramifications of these 
differences, is an area we are excited to explore further in future work. 
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By open-sourcing the tools and techniques we developed during this research, we hope to 
enable researchers to continue building on our work, creating new techniques to identify and 
flag malicious bots, and helping to keep Twitter and other social networks a place for healthy 
online discussion and community.   
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Appendix 

A. Feature List for Machine Learning Algorithms 
Because of the fidelity in the Cresci dataset, we were only able to include a subset of the 
attributes we computed when trying to identify heuristics. 
 

Feature  Description 

favorite_rate  Ratio of favorites to account age 

ratio_followers_friends  The number of followers divided by the 
number of friends or accounts the user is 
following 

tweet_rate  Ratio of number of tweets to account age 

screen_name_entropy  Shannon entropy of a user’s screen name 

numbers_at_end_of_screen_name  Number of numeric characters at the end of 
a user’s screen name 

numbers_at_beginning_of_screen_na
me 

Number of consecutive numeric characters 
at the beginning of a user’s screen name 

is_protected  Binary feature of whether or not the account 
is protected 

is_verified  Binary feature of whether or not the account 
is verified 

is_geo_enabled  Binary feature of whether or not geo 
coordinates are accessible 

is_default_profile  Binary feature of whether or not the user has 
altered the default profile 

percent_retweets  Percent of tweets that were retweets 

percent_tweets_have_urls  Percent of tweets that contain URLs 

avg_num_urls_in_tweets  Average number of URLs in tweets 

number_distinct_sources  Number of distinct sources tweeted from 
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percent_tweets_have_hastags  Percentage of tweets that contain hashtags 

avg_num_users_mentioned  Average number of hashtags in tweets 

percent_tweets_have_users_mention
ed 

Percentage of tweets that mention users 

avg_reply_distance  Average distance between user IDs of 
messages replied 

duplicates  Average number of times a user tweets the 
same content more than once per day 

avg_time_between_tweets  The average amount of time between tweets 

num_users_replied  The number of users replied to 

avg_distinct_hours_tweeted  The average number of distinct hours 
tweeted in a day 

 

B. Cross-Validation Results 
Positive Sample: Social Spam Bots 

System  Accuracy  Precision  Recall  F1-Score  AUROC  Kappa  Brier 

AdaBoos
t 
Classifier 

.9833  .9889  .9825  .9857  .9952  .9655  .0142 

Logistic 
Regressi
on 

.9257  .9008  .9808  .9391  .9722  .8439  .0567 

Decision 
Tree 

.9775  .9872  .9741  .9807  .9781  .9535  .0233 

Random 
Forest 

.9843  .9906  .9825  .9865  .9948  .9675  .0135 

Naive 
Bayes 

.8357  .7934  .9721  .8736  .9424  .6446  .1283 

 
Positive Sample: Crypto-Giveaway Bots 

System  Accuracy  Precision  Recall  F1-Score  AUROC  Kappa  Brier 
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AdaBoos
t 
Classifier 

0.9742  .9897  .9718  .9807  .9947  .9417  .0216 

Logistic 
Regressi
on 

.9413  .9414  .9739  .9573  .9738  .8635  .0480 

Decision 
Tree 

.9662  .9829  .9669  .9748  .9706  .9236  .0319 

Random 
Forest 

.9745  .9905  .9714  .9809  .9946  .9424  .0205 

Naive 
Bayes 

.8770  .8550  .9851  .9154  .9449  .6939  .0951 

 
Positive Sample: Undersampled Crypto-Giveaway Bots 

System  Accuracy  Precision  Recall  F1-Score  AUROC  Kappa  Brier 

AdaBoos
t 
Classifier 

.9752  .9884  .9627  .9753  .9943  .9504  .0194 

Logistic 
Regressi
on 

.9451  .9254  .9704  .9473  .9867  .8899  .0517 

Decision 
Tree 

.9697  .9752  .9652  .9702  .9739  .9394  .0273 

Random 
Forest 

.9770  .9895  .9652  .9772  .9942  .9540  .0184 

Naive 
Bayes 

.8448  .7724  .9864  .8663  .9486  .6875  .10465 

 
 
Positive Sample: Social Spam and Crypto-Giveaway Bots 
 

System  Accuracy  Precision  Recall  F1-Score  AUROC  Kappa  Brier 

AdaBoost 
Classifier 

.9736  .9895  .9764  .9823  .9936  .9247  .0212 

Logistic  .9212  .9178  .9872  .9512  .9187  .7480  .0654 
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Regression 

Decision 
Tree 

.9698  .9913  .9697  .99804  .9740  .9149  .0277 

Random 
Forest 

.9750  .9913  .9765  .9838  .9938  .9288  .0202 

Naive 
Bayes 

.9180  .9180  .9823  .9490  .8927  .7394  .0723 

 
Positive Sample: Undersampled Social Spam and Crypto-Giveaway Bots 

System  Accuracy  Precision  Recall  F1-Score  AUC/RO
C 

Kappa  Brier 

AdaBoos
t 
Classifier 

.9758  .9866  .9681  .9772  .9935  .9514  .0210 

Logistic 
Regressi
on 

.9030  .8844  .9423  .9123  .9738  .8040  .0743 

Decision 
Tree 

.9710  .9823  .9629  .9727  .9728  .9418  .0266 

Random 
Forest 

.9782  .9886  .9706  .9795  .9939  .9562  .0193 

Naive 
Bayes 

.7942  .7275  .9856  .8368  .9248  .5746  .1777 
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