

Don’t @ Me: Hunting Twitter Bots at
Scale
Jordan Wright, Principal R&D Engineer, and Olabode Anise, Data Scientist, Duo Security

Introduction

Key Findings

Current Landscape of Twitter Bot Research

Building the Dataset
Finding Twitter Accounts

How Twitter Assigns User IDs
32-Bit User IDs
33-Bit User IDs
Snowflake IDs

Using the Tweet Stream
Enriching the Dataset

Gathering Tweets
Fetching Replies

Mapping the Social Network
Rate Limit Summary

System Architecture

Anatomy of a Twitter Bot
Identifying Heuristics

Account Attributes
Content
Content Metadata

Classifying Bot Accounts at Scale
Dataset
Why Use Machine Learning
Classification via Account Metadata

Exploratory Data Analysis
Model Training and Evaluation
Results on Unknown Accounts

Classification via Tweet Behavior, Tweet Content and Account
Feature Selection

1

Results on Unknown Data
Limitations, Considerations and Other Discussion

Crawling Botnets
Case Study: Cryptocurrency Scam Botnet

Initial Discovery
Evolution of the Botnet
Mapping the Network

Mapping Followers
Mapping Amplification Bots

Approaches That Didn’t Work
Snowflake ID Backtracking
Finding Who Favorited a Tweet

Next Steps

References

Appendix
Feature List for Machine Learning Algorithms
B. Cross-Validation Results

Introduction
Automated Twitter accounts have been making headlines for their effectiveness at spreading
spam and malware as well as influencing online discussion and sentiment. There have been a
variety of methods published in previous work showing either how to create a Twitter dataset
[4], [16] or techniques for finding potential bots from a previously shared or gathered dataset
[20], [32]. However, we have yet to find a work that describes the entire process in detail,
providing tools and techniques to other researchers interested in finding automated Twitter
accounts.

This paper details the techniques and tools we created to both build a large dataset containing
millions of public Twitter profiles and content, as well as to analyze the dataset looking for
automated accounts. By applying a methodical data science approach to analyzing our
dataset, we were able to build a classifier that effectively finds bots at a large scale. In this
work, we specifically look for automated accounts, not necessarily malicious automated
accounts. Distinguishing benign automation from malicious automation is a topic for future
work.

2

We then demonstrate how to pivot off discovered bots to find entire communities of connected
bots, or “botnets.” This analysis is given through a case study detailing a large organized
cryptocurrency spam botnet.

We have open sourced our data collection system used to gather account, tweet and social
network data to enable the community of security researchers to build on our work. This
system allows researchers to quickly build a large Twitter dataset for use in future work.

Finally, we aim to provide a narrative to our research, explaining why we chose various
approaches. We then include a section at the end of the paper that highlights different
techniques we tried that didn’t yield the expected results for the purposes of providing
transparent research.

Key Findings
This paper presents the following key findings:

● Using knowledge of how Twitter generates user IDs, we gathered a dataset of 88 million
public Twitter profiles consisting of standard account information represented in the
Twitter API, such as screen name, tweet count, followers/following counts, avatar and
description.

● As API limits allow, this dataset was enriched with both the tweets posted by accounts,
as well as with targeted social network information (follower/following) information.

● Practical data science techniques can be applied to create a classifier that is effective
at finding automated Twitter accounts, also known as “bots.”

● A case study detailing a large botnet of at least 15,000 bots spreading a cryptocurrency
scam. By monitoring the botnet over time, we discover ways the bots evolve to evade
detection.

● Our cryptobot scam case study demonstrates that, after finding initial bots using the
tools and techniques described in this paper, a thread can be followed that can result in
the discovery and unraveling of an entire botnet. For this botnet, we use targeted social
network analysis to reveal a unique three-tiered hierarchical structure.

Current Landscape of Twitter Bot Research
The dynamics of how users communicate on Twitter make it a fascinating area of both social
and security-related study. In particular, the topic of building datasets based on content posted
to Twitter and identifying automated accounts within a dataset are two areas we explore in this
paper.

[4] and [16] use the Twitter API to enumerate large datasets of users and their social networks
to characterize attributes about the users and trends in the growth of Twitter’s user base.

3

https://github.com/duo-labs/twitterbots

[5] and [6] use information about how user IDs are generated to gather a sample dataset used
to identify two large botnets. As noted in the “Finding Twitter Accounts” section below, our
work follows a similar methodology when building the dataset, though we extend data
collection to the previously unstudied 33-bit ID space. In addition to this, we examine the
challenges and workarounds when studying user IDs generated with the 64-bit Snowflake
format.

Studies such as [5], [6], [18], [21], [32], [36] and [37] use attributes from gathered datasets to
build classifiers which are used to identify automated accounts. Our work uses a similar
approach to build a classifier that is used to find automated accounts within our gathered
dataset.

To discover organized botnets, studies such as [5] and [6] build classifiers with specific
features to find related bots. Due to limitations imposed by Twitter’s API, it’s infeasible to study
organized botnets across a large dataset using social network information. As a case study,
our paper analyzes a large cryptocurrency scam botnet, showing how targeted social network
information gathering can reveal the structure of the botnet.

Our work provides an end-to-end look at both the techniques, tools and challenges of
gathering large Twitter datasets as well as showing the process of applying a practical data
science approach to discover automated bots.

Finally, this work introduces our open-source data collection system [35], which can be used to
gather public datasets suitable for use in further study by the larger research community.

Building the Dataset
The first part of our research involved creating a system that efficiently gathers large amounts
of public Twitter data for analysis. At a high level, this process used the Twitter API [1] to
gather an initial dataset of public profile information as shown in the “Finding Twitter Accounts”
section. We then enrich the dataset by gathering the tweets associated with accounts. As
needed, it’s possible to then fetch the social network connections for each account, such as
the following/followers information.

When creating a data collection system, we intentionally constrained ourselves to the rate
limits imposed by the Twitter API so that the system could be used by other researchers
without modification. This means that the data collected from this system used a single
application with a single authenticated user.

In the following sections, we describe techniques we used to maximize the efficiency of our
data collection while conforming to the rate limits imposed by the API.

4

Finding Twitter Accounts
Fetching public Twitter profiles is the first step toward building our dataset. The Twitter API
represents high-level profile information as user objects. User objects contain fields including
the profile’s screen name, tweet count, followers/following counts, avatar and description [2].

Our goal is to find accounts as efficiently as possible. That is, to maximize the rate in which
new accounts are discovered while still conforming to the imposed API limits. In addition to
this, where possible, we aim to create a uniform, random sample of accounts that is
representative of the larger Twitter ecosystem.

Enumerating user accounts first relies on an understanding of how Twitter generates user IDs.

How Twitter Assigns User IDs
Twitter first assigned user IDs as sequential 32-bit unsigned integers from 1 to 2^32 [4]. This
range has been used in previous studies such as [5] and [6] when enumerating user accounts.
In the “33-Bit User IDs” section below, we show that our data gathering discovered that this
sequential ID assignment continued into the 33-bit space.

In 2013, Twitter announced [7] that account IDs would transition to a new 64-bit format
generated by a system called Snowflake. Initially introduced in 2010 [8], Snowflake had
previously been generating IDs for tweets, but was being transitioned to generating IDs for
most (if not all) Twitter objects.

Snowflake IDs have the following format:

● 41 bits: The timestamp - number of milliseconds since a custom epoch [27]
● 10 bits: Node number - a unique number to identify the host that generated the ID
● 12 bits: Sequence number - a rolling sequence number used by each host

In the blog post [7], Twitter scheduled the switch to Snowflake IDs for October 2013. The
earliest 64-bit ID found in our dataset was created in early 2016, suggesting a later transition
date. This also suggests that, while the exact cause of extending account IDs into the 33-bit
unsigned integer space is unknown, it’s possible that the 33-bit ID generation served as a
transition period both for Twitter to move to the new ID format, as well as for client libraries to
adapt to the new, longer ID format which was known to cause inconsistencies for certain
languages [31].

Using this knowledge of account ID generation, we gathered the account dataset using two
separate methods: account ID enumeration and hooking into the Twitter sample tweet stream.

5

32-Bit User IDs
Twitter offers a variety of API endpoints to fetch account information. One of the most efficient
endpoints is users/lookup [3], which offers the ability to submit 100 possible user IDs or
screen names per request and receive the fully populated user objects for existing accounts.
This API endpoint has a rate limit in place which, at the time of writing, allowed an
authenticated user to submit 900 requests over a 15-minute window. This means that by
finding a way to reliably generate candidate user IDs, this endpoint can be used to perform 8.6
million ID lookups per day.

As mentioned in the previous section, user IDs were first generated as sequential unsigned
32-bit integers. This makes it easy to create a uniform, random sampling of the entire ID space
by generating a percentage of candidate IDs and submitting them against the users/lookup
method.

Having a uniform sample set across the entire 2^32 bit ID space provides a large corpus of
account data that can be used to discover groups of bots created around the same time. For
example, previous work from Echeverria [5] and [6] was successful at finding large botnets
sourced from a 1 percent random sampling of this available ID space.

During the course of our research, we enumerated a random 5 percent sampling over the
available ID space. Similar to the work from [6] the following chart shows the density of
accounts in this available space, using buckets of 1 million account IDs and colored by the
year the account was created.

6

At an average account density of 32 percent, this yielded a uniform random sample of 66
million accounts.

33-Bit User IDs
Previous work had only discussed account IDs in the 32-bit unsigned integer space; however,
during our account gathering process, we also discovered that the use of sequential IDs
continued throughout 2016 with IDs extending into the sequential 33-bit unsigned integer
space.

We extended our 5 percent account sampling to include the space between 4*10^6 and
5*10^6, yielding roughly 3 million new accounts largely created between 2015 and 2016.
During our data gathering, we did not find any accounts with an ID greater than 5*10^6.

The following graph shows the ID space density we recorded in this ID range:

7

Snowflake IDs
The introduction of the Snowflake ID format makes it difficult to enumerate accounts
sequentially, since there are multiple different pieces of information that would need to be
guessed. In the “Approaches that Didn’t Work” section, we describe the results of our attempts
to enumerate Snowflake IDs by analyzing our existing ID corpus.

Since enumeration isn’t feasible, we have to take a different approach by letting the user
information come to us by hooking into Twitter’s tweet stream.

Using the Tweet Stream

Twitter offers multiple different streams, which are API endpoints that allow clients to connect
and receive real-time tweet objects filtered and sampled using various parameters. While most
of the streaming endpoints are reserved for paid enterprise access, two of the streaming
endpoints, statuses/sample and statuses/filter, are available to all applications.

For our research, we connected to the statuses/sample endpoint, which provides a “small
random sample of all public statuses” [9]. The tweet objects returned in this stream contain the
full user object of the account that created the tweet.

While in our case we chose to use the statuses/sample endpoint, the statuses/filter
endpoint can be used to support targeted research around specific events through hashtags or
keywords. This is also useful, for example, to find tweets containing links by filtering on the
term “http.”

8

When building a dataset, it’s important to remember what biases are being included. As an
example, we note that by retrieving accounts through the Twitter stream, this data is biased
towards users who have tweeted very recently. When building our classifier in the “Classifying
Bots at Scale” section below, we do not use how recently an account has tweeted as an
attribute of bot behavior. We more comprehensively address potential limitations in the dataset
in the “Limitations, Considerations and Other Discussion” section later in the paper.

During the course of our research, we gathered 19 million accounts via the streaming API,
averaging approximately 940,000 accounts per day.

Enriching the Dataset
After gathering the high-level account information, the next step is to enrich the dataset with
both the content (tweets) and the social network information (how accounts are connected).

While it’s possible to predict with a certain degree of confidence whether or not an account is a
bot using just the account information provided in the user object, there are other attributes
that are only available by analyzing the tweet content. Additionally, gathering the social
network information helps identify directed connections between bot accounts, as well as
identifying potential communities, also known as "botnets."

Gathering Tweets
The first step in the data enrichment process is gathering the tweets for an account. The
statuses/user_timeline endpoint [10] can be used to fetch the latest 3,200 tweets from
an account’s timeline.

However, this endpoint only returns 200 tweets per request, and is rate limited to 1,500
requests per rate limit window. Since this method only accepts a single screen name or user ID
per request, this causes the tweet collection process to be much slower than the account
collection with just 144,000 lookups per day.

To help make tweet collection as efficient as possible, we applied the following rules when
fetching tweets for the accounts in our dataset:

● Only fetch tweets for users with more than 10 tweets published
● Only fetch tweets for users who don’t have their account set to “protected”
● Only fetch tweets for users who declare English as their language

In addition to these, we only fetched the first 200 tweets for each user. We determined that, for
our research, the latest 200 tweets would be a large enough sample size for determining if the
account was automated, as well as what type of content the account published.

9

We can also use the tweets to help discover new user accounts. Tweet objects contain the
account IDs for any mentioned users. Additionally, if the tweet is a reply to another tweet, the
original account ID is also included in the in_reply_to_user_id field. These extracted IDs
can be sent back into the users/lookup process to gather the full accounts of users found in
tweets.

During the course of our research, we gathered tweets for 3.1 million accounts, resulting in a
dataset of 576 million tweets.

Fetching Replies

If the fetched tweet is a retweet, then the original tweet is included in the response object.
However, if the tweet is a reply, the response only specifies the original tweet ID. Some
characteristics of bot accounts apply to the relationship between the published reply and the
original tweet, such as how quickly the reply was created. In order to analyze the relationship
between the reply and the original tweet, we needed to fetch the original tweet.

To do this, we can use the statuses/lookup [11] endpoint. This method has the same rate
limits as the users/lookup method used earlier in the account ID enumeration process.

Mapping the Social Network
One of the goals of our research was to explore how bot accounts are controlled and how they
connect to each other. For example, if accounts tweet identical content at roughly the same
time, then we can infer with a degree of confidence that the accounts are controlled by the
same entity. However, another way to group accounts is by analyzing their social network
connections.

Twitter tracks directional connections in the form of “follow”s. The friends/ids [12] and
followers/ids [13] API endpoints can be used to retrieve the account IDs of who the
targeted account is following, or who is following the account. These endpoints return IDs in
groups of 5,000, which can then be used with the users/lookup endpoint to retrieve the full
account information. This process can then be repeated for each new connection, resulting in a
network of accounts that are considered an n-degree connection to the original account.

Once these connections are retrieved, a directional graph can be built to further analyze and
explore using specialized graph analysis tools like Gephi [14] or Neo4j [15]. As part of this
research, we’ve open sourced a script, crawl_network.py, [35] that creates the social graph
to a configurable degree for a given account and exports the results in GEXF format.

The graph below demonstrates this output, showing how a 1-degree crawl of the social
network for a known “fake follower” (a bot account that exists to follow other accounts in order
to artificially inflate those accounts’ popularity) can discover a large network of thousands of

10

other fake followers (black nodes) highly connected to potentially legitimate user accounts
(green nodes).

During our research, both endpoints were rate limited to only allow 15 requests per 15-minute
rate limit window. Previous research [16] attempted to map the entire Twitter social graph by
finding systems that had been previously whitelisted from Twitter’s API rate limits. For our
research, we explicitly wanted to build a system that gathers data conforming to the normal
API rate limits. This means that the existing rate limits on these endpoints make gathering
social network connections at a large scale impractical due to the time requirements.

11

However, gathering social network information can still be very useful when applied in a
targeted fashion. For example, once a bot is identified, the bot’s social network information can
be gathered to find similar connected accounts, resulting in a network that could be a potential
botnet. An application of this targeted network analysis to discover an organized botnet can be
found in the “Case Study: Cryptocurrency Spam Botnet” section below.

Targeted social network gathering can also be useful in discovering bots designed to artificially
inflate follower counts. These bots, called “fake followers,” are used to increase the number of
followers for an account, making the account seem more popular than it actually is. The New
York Times published an article [17] that demonstrated patterns of bot behavior when viewing
the account creation dates for followers over time.

Rate Limit Summary
The previous sections explain the various measures we took to gather account information as
effectively as possible, however, the output of the system is still largely determined by the rate
limits in place on the APIs.

The following chart summarizes the rate limits in place for the various API endpoints used
during our data collection:

System Architecture
To enable security and academic researchers to reproduce our results or perform their own
research on large-scale public Twitter datasets, we’ve open sourced our data gathering system
[35], which uses the techniques detailed above to efficiently gather accounts and tweets.

The following architecture diagram shows the components of the data gathering system:

12

This system is divided into two separate processes: an account collection process
(collect.py), and a tweet collection process (collect_tweets.py). The final information is
saved in compressed JSON files in NDJSON format. High-level account metadata is also
saved in a database, which can be used for summarized analytics.

Anatomy of a Twitter Bot
After gathering the initial dataset, we started the process of identifying bot accounts. To do
this, we asked the question “what attributes would make an account look suspicious?” We
then took these characteristics and manually verified a small number of accounts to see if our
decisions proved effective in finding bots. Then, in the “Classifying Bot Accounts at Scale”
section below, we construct a classifier to more effectively identify bots across our dataset.

Identifying Heuristics
We divided the attributes of an account into three categories:

● Account Attributes - These are attributes in the user object, including the number of
tweets, likes, following/follower count, screen name and more

13

● Content - The text of the created tweets
● Content Metadata - The metadata for created tweets, including time-based and

location-based information

A full list of the attributes we included can be found in the following table:

Heuristic Category

Number of digits at the end or beginning of the screen name Account attributes

Entropy of the screen name Account attributes

Ratio of followers/following Account attributes

Number of likes relative to account age Account attributes

Number of tweets relative to account age Account attributes

Average number of users mentioned in a tweet Content

Average number of unique accounts being retweeted Content

Number of unique sources Content

Number of tweets with the same content per day Content

Percentage of tweets with URLs Content

Ratio of tweets with photos vs. just text Content

Average number of hashtags in tweet Content

Number of unique languages detected in tweets Content metadata

Number of tweets per day, relative to account age Content metadata

Average number of tweets per day Content metadata

Average time between tweets Content metadata

Average hours tweeted per day Content metadata

Average “distance” of account age in retweets/replies Content metadata

Average distance between geolocation-enabled tweets Content metadata

It’s important to note that these aren’t the only attributes we could have considered. There
have been studies such as [36] and [37] that used these and other attributes when studying

14

automated Twitter accounts. The attributes that we studied were areas we felt would lead to
effective bot detection, but we encourage researchers to explore new attributes which may be
even more effective.

The next sections briefly explore the various attributes and why we considered them useful
when finding bots.

Account Attributes

Account attributes, such as the number of tweets or likes, can be useful for identifying a bot
when compared to the length of time the account has been active, as well as when compared
to other attributes. Some sources such as [34] use account information as a primary source
when identifying fake followers.

Additionally, we observed cases where accounts had no activity other than liking many tweets
in a short period of time, raising the possibility that the account may be an amplification bot
designed to artificially inflate the popularity of tweets.

We also analyzed attributes of the screen name, such as the amount of entropy or the number
of digits at the beginning or end. This helps find bots that have algorithmically-generated
screen names, which is often required when generating large amounts of accounts.

Content

Once tweets for an account are gathered, they can be analyzed to identify bots that aim to
spread spam and malicious links to unsuspecting users. While there have been studies such as
[18] that analyze the language structure and sentiment to discover bots that influence online
discussion, our analysis focused on attributes that were more straightforward to calculate.

Many of the attributes we analyzed were focused on the number or inclusion of different
elements within a tweet. For example, we averaged the number of tweets each account
created that includes a URL. This may be indicative of a user who actively shares links, tweets
that were created by a third-party application, or potentially a bot sharing malicious links.

Content Metadata

One of the most important types of attributes to consider when analyzing an account for bot
activity is the metadata around posted content. This metadata can identify suspicious patterns
when aggregated over all of the account’s tweets.

A great example of this is time. For example, the average Twitter user will likely only tweet
during certain hours of the day, whereas bots are able to tweet throughout the entire day.
Averaging the number of hours per day an account is active may help identify automated
accounts.

15

The following graph illustrates the differences when comparing the distribution of tweets over
time for both an individual and a bot:

This same analysis can be performed on other tweet relationships, such as how quickly
consecutive tweets are posted, how quickly replies are generated, or how quickly a tweet is
retweeted.

Another type of metadata used for identifying bots is geolocation. While adding geolocation to
tweets is optional, there have been cases of bots doing this, likely an attempt to evade
detection. The “Star Wars” botnet in [5] was initially discovered by examining accounts with
tweets claiming to originate from a uniformly distributed rectangular area, including uninhabited
areas.

In addition to the location from where the tweets were posted, another pattern to analyze is the
average distance between tweets. If bot creators always update their geolocation for every
tweet, the average distance between these tweets may be much higher than a normal user.

16

Classifying Bot Accounts at Scale

Dataset
The dataset we used in our project comprised accounts labeled as genuine (labeled genuine
accounts) or social spam bots by Cresci et. al in 2016 along with their tweets [20]. In addition,
we included the account metadata and tweet data associated with accounts that were involved
in a cryptocurrency giveaway scam (labeled crypto-giveaway bots) discussed in the “Crawling
Botnets” section below.

Last, we have the 42 million unlabeled accounts along with their tweets that were compiled by
using Twitter’s APIs. Across each of the groups, there are 15,636 accounts and 6,389,009
tweets. Below you can find a breakdown of each of the different groups.

Goals and Objectives
In the following sections, we will:

1. Experiment with a few classification algorithms and show how they perform on a
labeled dataset without any hyperparameter tuning

2. Illustrate how performance changes when training on one class of bots and predicting
on another when using the best model

3. Determine which combination of features are most important
4. Gain an understanding of the accounts that our model believes to be most likely to be a

bot through the use of the millions of accounts that we compiled

Why Use Machine Learning
When we used the attributes listed above to create heuristics, we had to manually examine
outliers to determine if the attribute would be effective at finding bots. However, this process
doesn’t scale to the millions of accounts in our unknown dataset or even the thousands of

17

accounts in our labeled datasets. Instead, we leveraged a few machine learning algorithms,
using a subset of the attributes listed in the table above to build features which are used to
train a classification algorithm to determine whether an account is a bot. The final list of
features is in Section A of the Appendix.

Fitting a model that can be used for classification with our attributes has the benefit of viewing
an account through the lens of a combination of all our features, not each individually. Some of
our features are effective at identifying bots when combined with other features, but would
have a very high false-positive rate if used in isolation.

For example, the percentage of tweets with links had a mixture of both automated accounts
and legitimate news sources or content creators. These models can optimize how much
emphasis, or weight, is put on each feature to help increase the accuracy of bot detection.
There is a substantial amount of literature showing that approaches relying on labeled
(supervised) [19] and [20] and unlabeled datasets (unsupervised) [21] have proven to be
successful in classifying bots and/or automation on Twitter.

Classification via Account Metadata

Exploratory Data Analysis

Prior to investigating which algorithm would perform the best on our data, we explored each of
the predictors we detailed above and how they differed among each of the groups. In terms of
the predictors that measure activity (e.g., number of tweets per day), the genuine accounts had
the highest averages by far. Those genuine accounts averaged 3.78 favorites per day and 11.3
tweets per day.

For both sets of bots, their averages were at least a degree of magnitude lower. In terms of
attributes associated with screen names, the bot accounts showed some distinct differences.
On average, both sets of bot accounts had screen names with higher Shannon entropy;
however, only the crypto-giveaway bots had a distinguishable number of characters at the end
of the screen name.

18

19

Model Training and Evaluation
Using the following features:

● favorite_rate - ratio of favorites to account age
● ratio_followers_friends - the number of followers divided by the number of

friends or accounts the user is following
● is_geo_enabled - binary feature of whether or not geo-coordinates are accessible
● tweet_rate - ratio of number of tweets to account age
● is_default_profile - binary feature of whether or not the user has altered the

default profile
● screen_name_entropy - Shannon entropy of a user’s screen name

20

● numbers_at_end_of_screen_name - number of numeric characters at the end of a
user’s screen name

● is_protected - binary feature of whether or not the account is protected
● numbers_at_beginning_of_screen_name - number of consecutive numeric

characters at the beginning of a user’s screen name
● is_verified - binary feature of whether or not the account is verified or not

We trained and compared five machine learning algorithms via the Machine Learning in R (mlr)
package [22]. The five algorithms we chose were AdaBoost, Logistic Regression, Decision
Trees, Random Forest and Naive Bayes.

To evaluate each of the algorithms, we measured their accuracy, precision, sensitivity,
F1-score, area under ROC curve (AUROC), Cohen’s kappa coefficient and Brier score. By
using each of these metrics, we can assess how well each model identifies both bot and
genuine accounts.

To compute the aforementioned metrics, we used 10-fold cross-validation. Cross-validation is
a resampling procedure used to compare the performance of machine learning algorithms to
each other or of those with different hyperparameters. Cross-validation helps assess how the
model will perform on an unknown dataset and provide insight to if and how our model is
overfitting the data.

In our case, we shuffled the data randomly and split it into 10 equal groups. We trained a
model using nine of the slices of data and then evaluated it on the remaining slice. We
repeated this process to evaluate each of the 10 groups. Each round we computed metrics,
and then after the 10th round, we took the average of each metric.

Because we had two sets of bot accounts, we set up five tasks where we utilized the genuine
accounts and a different combination or proportion of the social spam bots and
crypto-giveaway bots. We set up these tasks to measure the effect of the sample size on the
chosen algorithms and to evaluate how having a mixed set of bot accounts affected prediction.
The full results from the 10-fold cross-validation for each task are in Section B of the Appendix.

In summary, the Random Forest classifier proved to perform the best irrespective of the bot
data used for training. It consistently had an accuracy of approximately 98 percent and an AUC
of .99. Also its Brier score was the lowest across each task.The Naive Bayes classifier proved
to be the worst, as expected. It was the only model that didn’t achieve at least a 90 percent
accuracy.

21

Using the metrics from cross-validation, we knew that the Random Forest model was the
optimal choice; however, we wanted to assess how the model would perform if trained on one
set of the bot data and then predicted on the other. We knew that each sample wasn’t a
representative sample of bots in the Twitter eco system, but we wanted to find out what we
considered to be our test accuracy on known bots.

To do so, we trained three Random Forest models:

1. A dataset of the genuine accounts and the social spam bots
2. One which had the genuine accounts and a random sampling of 4,912

crypto-giveaway bots
3. Another that contained the genuine accounts and entire set of crypto-giveaway

accounts.

We then used the three models to predict on the other class of bots.

In our case, the output of the Random Forest model is the probability that an account is a bot.
Because we don’t have any information in regards to the penalty or cost associated with either
type of classification error, we use 0.5 as the threshold for whether an account is a bot or not.

With that threshold, we achieved an accuracy of 80 percent using the model trained with the
social spam bots to predict on the crypto-giveaway bot accounts. The model trained on an
equivalent number of crypto-giveaway accounts performed far worse by comparison with an
accuracy of 49 percent on the social spam bots; however, when trained using the entire set of
crypto-giveaway bots, we were able to achieve a 53 percent accuracy. One source of this
minor increase in accuracy could be the increased amount of bot accounts trained on.

22

Results on Unknown Accounts
Utilizing a dataset comprised of genuine accounts and all the bot accounts from each class of
bots, we fit a Random Forest model once more. With this model, we then predicted the
probability of whether or not 42 million accounts that we compiled utilizing the Twitter API were
bots. To understand what our classifier finds important, we examined the differences between
the accounts that had the highest probability to be a bot (top 20 percent) and the accounts
with the lowest probability to be a bot (bottom 20 percent).

As we hoped, the bottom 20 percent contained the vast majority of the verified accounts in our
dataset which is why the ratio_followers_friends is significantly higher. Verified
accounts belong to users involved in media, sports, music, acting or other areas of interest
[33]. Those accounts typically have a very high ratio of followers to friends. Upon further
investigation of the accounts in the top 20 percent percent, our fitted model outputs a higher
probability that older accounts with very little activity is a bot, rather than those with more
activity.

23

Classification via Tweet Behavior, Tweet Content and Account

Feature Selection
In the previous section, we only used 10 features based on account metadata to try to classify
accounts. With such a quantity of features, the risk of overfitting (i.e., the chance that our
model is fit too closely to our training data and may not generalize well when it encounters new
data), is most likely smaller than the case in which we have 22 features (described in Section A
of the appendix). Moreover, there is the potential that more of our features are highly correlated
and/or don’t provide us much additional signal given other features in the model. Generally,
performing feature selection allows more interpretable models, shorter training times, and less
data to keep around.

There are several methods to select a subset of features. Our method of choice was recursive
feature elimination through the use of Random Forests. We implemented this using the caret
[21] package. Put simply, this approach removes features recursively and builds a model on
the features that remain. It uses the metric of importance (e.g., accuracy, root mean squared
error, AUC, etc.) to identify which feature or subset of features contribute the most and ranks
them.

Utilizing a Random Forest model to determine the best set of features, we found that on the
Cresci dataset, we were able to achieve an AUC of 0.99 by only using favorite_rate,
is_default_profile, avg_reply_id_distance, avg_distinct_hours_tweeted and
avg_num_users_mentioned_in_tweets. However, our accuracy rate on the

24

crypto-giveaway accounts was only 83 percent. During feature selection, we are optimizing for
the AUC on the training data; however, as discussed earlier, if the accounts we are predicting
on behave differently, we will see much worse results.

Results on Unknown Data
The sample of data that we used in classifying accounts using the five features above was a
sample of 692,906 accounts that had tweeted in the last 90 days. We did this to replicate the
approach outlined before, which only used account metadata, but this time, we restricted our
predictions to recently active accounts.

Using the five features from above, we found significant differences in the averages of each of
the features when comparing the top 20 percentile of accounts deemed to be bots by our
model and the bottom 20 percentile. Those accounts in the top 20 percentile were more likely
to have a default profile, tweet over more hours and favorite fewer statuses.

Limitations, Considerations and Other Discussion
Because our dataset only consists of an account’s last 200 tweets, we are only able to get a
glimpse into their real behavior. It’s possible for an account to exhibit behaviors of a normal
user or behaviors that would only be possible through automation at different times.

As a result, our findings in the previous sections represent an interpretation of what the
account looked and behaved like recently. If we considered an account’s entire timeline, we
could more accurately determine which accounts were behaving like bots. With that data, it is
also possible to determine shifts in behavior as well.

An additional point of consideration is that our dataset of bot accounts consists of only two
groups of bots -- one of which is made up of accounts from two years ago. Those sets of
accounts are not representative of all bot accounts that may exist on the Twitter platform. Our
results show that our accuracy significantly decreases when the algorithm sees a type of bot
that is different in some way from the accounts included during training.

25

Another point that merits discussion is the cost of a false positive. We aren’t privy to the
support costs or any other effects that Twitter must take into account when trying to predict
whether an account is a bot or not. Having a greater understanding of those costs would have
an impact on the thresholds of what is or isn’t a bot. Optimizing for cost would most likely
affect the accuracy, precision and sensitivity for any method.

Crawling Botnets
After using these approaches to find initial sets of bots, the next steps are to determine if the
bots are isolated or if they are part of a larger botnet controlled by a single entity.

Botnets can be structured in different ways. For example, the Star Wars [5] and Bursty [6]
botnets have a flat structure where each bot showed the same behavior. Alternatively, some
botnets such as a diet-spam botnet discovered by Symantec [24] contain a more organized,
multi-tiered structure with bots dedicated to different roles such as publishing spam, tweet
amplification and fake followers.

The following section is a case study about a botnet we discovered that uses a multi-tiered
structure similar to that of the diet-spam botnet to spread cryptocurrency scams.

Case Study: Cryptocurrency Scam Botnet

Initial Discovery
In late May 2018, we discovered what appeared to be automated accounts spoofing otherwise
legitimate cryptocurrency Twitter accounts in an effort to spread a “giveaway” scam.

26

The typical operation of the bots involved first creating a spoofed account for a legitimate
cryptocurrency-affiliated account. This spoofed account would have (what appeared to be) a
randomly-generated screen name, and would copy the name and profile picture of the
legitimate account.

To spread the spam, the bot would reply to a real tweet posted by the legitimate account. This
reply would contain a link inviting the victim to take part in a cryptocurrency giveaway.

As discussed in the next “Evolution of the Botnet” section, this botnet used several methods to
evade detection over the few months we were periodically monitoring it. However, early
iterations of the botnet could be matched using basic signatures. We used these signatures
with the search/tweets [25] API endpoint to gather the initial list of 7,250 bots to be used in
exploratory data analysis and building our classifier.

We polled the same API endpoint on multiple occasions throughout June 2018 to determine if
the botnet was still active, which resulted in a collection of 12,000 spam generating bots.

27

The initial set of bots provided an indication of what type of spam the botnet was publishing,
but didn’t reveal how the bots are organized and managed. To map out the structure behind
the bots, we gathered a final small collection of bots to be used when performing a recursive
crawl detailed in the “Mapping the Network” section below.

Evolution of the Botnet
Throughout the course of our research, we observed the accounts responsible for spreading
the malicious links would use increasingly sophisticated techniques to avoid automated
detection. Specifically, we observed the following techniques being used:

● Using unicode characters in tweets instead of traditional ASCII characters
● Adding various white spaces between words or punctuation
● Transitioning to spoofing celebrities and high-profile Twitter accounts in addition to

cryptocurrency accounts
● Using screen names that are typos of a spoofed account’s screen name
● Performing minor editing on the profile picture to avoid image detection

These attempts to thwart detection demonstrate the importance of analyzing an account
holistically, including the metadata around the content. For example, these accounts will
typically tweet in short bursts, causing the average time between tweets to be very low.

Mapping the Network

Mapping Followers

Once we determined how the bots operate, we began analyzing the structure of the botnet. We
noticed that many of the bots followed what appeared to be the same accounts. We consider
these accounts to be “hub accounts,” since many bots follow them. It’s unclear how these hub
accounts directly contribute to the botnet operation, other than being a set of centralized
accounts many of the bots follow. It’s possible that these accounts aren’t affiliated with the
botnet and are randomly chosen accounts which the bots follow in an effort to appear
legitimate.

We then performed a recursive search, gathering which accounts each bot followed. Then, for
each of these hub accounts, we gathered all their followers, checking to see if the followers
were a cryptocurrency scam bot. If we determined it was a bot, we recursively searched the
accounts that bot was following since these may be new hub accounts.

This allowed us to enumerate around 2,600 additional bots which were found to be spreading
malicious links claiming to be cryptocurrency giveaways. Mapping these relationships revealed
two notable loosely connected clusters.

28

The first cluster we discovered mostly follow hub accounts, creating a sparse community of
bots all following the same accounts. The following graph maps these connections, with each
hub account displayed as a highly-connected node:

The second cluster takes a different approach. The accounts in this cluster are highly
connected in a mesh-like structure, where each bot follows other bots in the same community:

29

Mapping Amplification Bots

Amplification bots are accounts that exist to like tweets in order to artificially inflate the tweet’s
popularity. To make the cryptocurrency scam appear legitimate, we noticed that amplification
bots were used to increase the number of likes for the tweets sent by bots.

The only activity these amplification bots had were liking the cryptocurrency scam tweets from
a variety of bots:

30

We wanted to map out the relationships between amplification bots and the bots they support.
To do this, for every tweet from the cryptocurrency scam bots, we determined which accounts
liked the tweet (see the “Approaches that Didn’t Work” section for difficulties we encountered
when performing this mapping). If the account had the same characteristics of an amplification
bot, we used the favorites/list [26] endpoint to enumerate every status the amplification
bot has liked.

Searching through the other statuses liked by amplification bots helped us discover previously
unknown cryptocurrency scam bots. Each time we discovered a new scam bot spreading
malicious links, we performed the same social network gathering as above, looking for even
more connected bots.

This resulted in a three-tiered botnet structure consisting of the scam publishing bots, the hub
accounts (if any) the bots were following, and the amplification bots that like each created
tweet. The mapping shows that the amplification bots like tweets from both clusters, binding
them together. This final mapping is shown below, where “following/follower” relationships are
shown as black edges and “like” relationships are shown in green:

31

At a high level, this case study demonstrates that, after finding initial bots using the tools and
techniques described in this paper, a thread can be followed that can result in the
unraveling of an entire botnet.

While gathering social network connections can be expensive due to the rate limits in place at
the time of this writing, gathering this information in a targeted fashion can be very effective in
identifying new potential bot accounts after initial sets of bots have been gathered. This type of
network analysis also helps reveal the structure of the botnet, helping provide characteristics
that can be used to identify similar botnets in future work.

Approaches That Didn’t Work

Snowflake ID Backtracking
The “How Twitter Assigns User IDs” section above describes the transition to 64-bit IDs
generated by a system called Snowflake. These IDs are created from a timestamp, a worker
number and a sequence number.

32

Our goal was to determine if we could use the IDs we previously gathered via streaming to
generate valid Snowflake IDs that could then be sent to the users/lookup endpoint to find
new accounts. The idea is that new accounts are likely created frequently, so for each ID, we
could decrement the sequence number and create a new candidate ID that would be a
possible account ID.

To do this, we split each ID into the different components and measured the frequency of
values seen. The following charts show the distribution for worker numbers and sequence
numbers.

33

These charts show that, while there are multiple bits reserved for these values, the actual range
of values is fairly predictable. This suggests that even just predicting random Snowflake values
may be possible by choosing a random timestamp in the valid date range, picking a worker
number in the observed range, and starting with sequence number 0.

However, for our approach, we opted for an even simpler solution. Since the distribution of
sequence numbers drops significantly, we can infer that the sequence number is reset for each
new timestamp. This is further confirmed in the (now deprecated) Snowflake source code [27].

To generate our candidate IDs, we filtered our existing Snowflake ID dataset to those with a
sequence number greater than 0. Then, we generated new IDs for each sequence number until
we reached sequence number 0. Finally, we submitted the generated IDs to the
users/lookup endpoint to potentially gather new accounts.

While this resulted in finding some accounts, the overall success rate was well below 1
percent. The results suggest that workers generating snowflake IDs are responsible for
generating the IDs for many types of Twitter content in addition to just accounts.

Since we could assume that there will be many more tweets than accounts, we changed our
approach to use the statuses_lookup endpoint instead of the users/lookup endpoint.
This increased the success rate dramatically to approximately 13 percent, proving the method
to be effective at finding users who have recently tweeted, since each tweet object contains
the original user object.

34

However, our goal was to find accounts that were created around a particular date and, to that
end, this approach was unsuccessful.

Finding Who Favorited a Tweet
As mentioned in the “Crawling Botnets” section, a common botnet structure includes
amplification bots whose sole function is to like tweets containing malicious content in an
attempt to make the content appear legitimate. It’s often the case that these accounts are the
only links between other spam-creating bots, making them useful for researchers.

At the time of this writing, we were unable to find a published API endpoint for determining
which accounts liked a particular tweet. This behavior currently only exists for discovering
retweets of a particular status using the statuses/retweeters/ids endpoint [28].

For our case study, in order to determine which accounts liked a particular status, we had to
rely on an unofficial API endpoint, which is not ideal when performing large-scale research. The
solution could be to create a new API endpoint, e.g. statuses/favorites/ids or similar.

Next Steps
During the course of this research, which spanned May 2018 through July 2018, Twitter
announced that they are taking more proactive action against both automated spam and
malicious content [29], identifying and challenging “more than 9.9 million potentially spammy or
automated accounts per week.” In a follow-up blog post, Twitter also described their plans to
remove accounts that had been previously locked due to suspicious activity from follower
counts [30].

We’re hopeful that these increased investments will be effective in combating spam and
malicious content, however, we don’t consider the problem solved. The case study presented
in this paper demonstrates that organized botnets are still active and can be discovered with
straightforward analysis.

During this research and in our conversations with Twitter when sharing our analysis, an area
that emerged as being important to any future research was the difference between the view of
Twitter built through its API and what users see in the user interface (UI). According to the
company, Twitter is actively working to hide malicious content from being visible in areas like
search and conversations, though the content can still be visible via the API. Twitter cites that
‘less than 5%’ of accounts are spam related.

Differences between data exposed via the UI and API, and the security ramifications of these
differences, is an area we are excited to explore further in future work.

35

By open-sourcing the tools and techniques we developed during this research, we hope to
enable researchers to continue building on our work, creating new techniques to identify and
flag malicious bots, and helping to keep Twitter and other social networks a place for healthy
online discussion and community.

36

References
[1] TwitterDev. “Docs - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs
[2] TwitterDev. “User Object - Twitter Developers.” Retrieved from
developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object
[3] TwitterDev. “GET users/lookup - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-referen
ce/get-users-lookup
[4] Krishnamurthy, B., Gill, P., & Arlitt, M. (2008). A few chirps about twitter. Proceedings of the
First Workshop on Online Social Networks - WOSP ’08, 19.
http://doi.org/10.1145/1397735.1397741
[5] Echeverría, J., & Zhou, S. (2017). Discovery, Retrieval, and Analysis of “Star Wars” botnet in
Twitter. http://doi.org/10.1145/3110025.3110074
[6] Echeverria, J., Besel, C., & Zhou, S. (2017). Discovery of the Twitter Bursty Botnet, 1–9.
Retrieved from http://arxiv.org/abs/1709.06740
[7] Roomann-Kurrik, A. (2013, January 22). “Moving to 64-bit Twitter User IDs.” Retrieved from
https://blog.twitter.com/developer/en_us/a/2013/64-bit-twitter-user-idpocalypse.html
[8] King, R. (2010, June 1). “Announcing Snowflake.” Retrieved from
https://blog.twitter.com/engineering/en_us/a/2010/announcing-snowflake.html
[9] TwitterDev. “GET statuses/sample - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/GET_statuse_sample
[10] TwitterDev. “GET statuses/user_timeline - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user_timelin
e.html
[11] TwitterDev. “GET statuses/lookup - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-loo
kup
[12] TwitterDev. “GET friends/ids - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-referen
ce/get-friends-ids
[13] TwitterDev. “GET followers/ids - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-referen
ce/get-followers-ids
[14] Gephi. (2017). “Gephi - The Open Graph Viz Platform.” Retrieved from https://gephi.org/
[15] Neo4j. “The Neo4j Graph Platform – The #1 Platform for Connected Data.” Retrieved from
https://neo4j.com/
[16] Maksym Gabielkov, Arnaud Legout. The Complete Picture of the Twitter Social Graph.
ACM
CoNEXT 2012 Student Workshop, Dec 2012, Nice, France. 2012. <hal-00752934v3>

37

[17] Confessore, Nicholas, et al. “The Follower Factory.” The New York Times, The New York
Times, 27 Jan. 2018,
www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html.
[18] Subrahmanian, V. S., Azaria, A., Durst, S., Vadim, K., Galstyan, A., Lerman, K., … Menczer,
F. (n.d.). The DARPA TWITTER BOT CHALLENGE. Retrieved from
https://arxiv.org/pdf/1601.05140.pdf
[19] Kudugunta, S., & Ferrara, E. (2018). Deep Neural Networks for Bot Detection. Retrieved
from http://arxiv.org/abs/1802.04289
[20] Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., & Tesconi, M. (2017). The
paradigm-shift of social spambots: Evidence, theories, and tools for the arms race.
Proceedings of the 26th International Conference on World Wide Web Companion - WWW ’17
Companion, 963–972. http://doi.org/10.1145/3041021.3055135
[21] Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., & Tesconi, M. (2016). DNA-inspired
online behavioral modeling and its application to spambot detection. IEEE Intelligent Systems,
31(5), 58-64.
[22] Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G and Jones Z
(2016). “mlr: Machine Learning in R.” Journal of Machine Learning Research, 17(170), pp. 1-5.
http://jmlr.org/papers/v17/15-066.html.
[23] Kuhn, M. (2008). Caret package. Journal of Statistical Software, 28(5)
[24] Narang, S. (2015). Uncovering a persistent diet spam operation on Twitter, 21. Retrieved
from
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/unc
overing-a-persistent-diet-spam-operation-on-twitter.pdf
[25] TwitterDev. “Standard search API - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
[26] TwitterDev. “GET favorites/list - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-favorites-list
[27] King, R. (2012, March 1). “twitter/snowflake”. Retrieved from
https://github.com/twitter/snowflake/blob/b3f6a3c6ca8e1b6847baa6ff42bf72201e2c2231/src/
main/scala/com/twitter/service/snowflake/IdWorker.scala#L81
[28] TwitterDev. “GET statuses/retweeters/ids - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-ret
weeters-ids
[29] Roth, Y., Harvey, D. (2018, June 26). “How Twitter is fighting spam and malicious
automation”. Retrieved from
https://blog.twitter.com/official/en_us/topics/company/2018/how-twitter-is-fighting-spam-and-
malicious-automation.html
[30] Gadde, V. (2018, July 11). “Confidence in follower counts”. Retrieved from
https://blog.twitter.com/official/en_us/topics/company/2018/Confidence-in-Follower-Counts.ht
ml
[31] TwitterDev. “Twitter IDs (snowflake) - Twitter Developers.” Retrieved from
https://developer.twitter.com/en/docs/basics/twitter-ids.html

38

[32] Thomas, K., McCoy, D., Grier, C., Kolcz, A., & Paxson, V. (2013). Trafficking Fraudulent
Accounts: The Role of the Underground Market in Twitter Spam and Abuse. USENIX Security
Symposium, 195–210.
[33] About verified accounts. (n.d.). Retrieved from
https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
[34] TwitterAudit. “Twitter Audit | How many of your followers are real?”. Retrieved from
https://www.twitteraudit.com/
[35] Duo Labs. “duo-labs/twitterbots” Retrieved from https://github.com/duo-labs/twitterbots
[36] Varol, O., Ferrara, E., Davis, C. A., Menczer, F., & Flammini, A. (2017). Online Human-Bot
Interactions: Detection, Estimation, and Characterization. Retrieved from
http://arxiv.org/abs/1703.03107
[37] Davis, C. A., Varol, O., Ferrara, E., Flammini, A., & Menczer, F. (2016, April). Botornot: A
system to evaluate social bots. In Proceedings of the 25th International Conference
Companion on World Wide Web (pp. 273-274). International World Wide Web Conferences
Steering Committee

39

Appendix

A. Feature List for Machine Learning Algorithms
Because of the fidelity in the Cresci dataset, we were only able to include a subset of the
attributes we computed when trying to identify heuristics.

Feature Description

favorite_rate Ratio of favorites to account age

ratio_followers_friends The number of followers divided by the
number of friends or accounts the user is
following

tweet_rate Ratio of number of tweets to account age

screen_name_entropy Shannon entropy of a user’s screen name

numbers_at_end_of_screen_name Number of numeric characters at the end of
a user’s screen name

numbers_at_beginning_of_screen_na
me

Number of consecutive numeric characters
at the beginning of a user’s screen name

is_protected Binary feature of whether or not the account
is protected

is_verified Binary feature of whether or not the account
is verified

is_geo_enabled Binary feature of whether or not geo
coordinates are accessible

is_default_profile Binary feature of whether or not the user has
altered the default profile

percent_retweets Percent of tweets that were retweets

percent_tweets_have_urls Percent of tweets that contain URLs

avg_num_urls_in_tweets Average number of URLs in tweets

number_distinct_sources Number of distinct sources tweeted from

40

percent_tweets_have_hastags Percentage of tweets that contain hashtags

avg_num_users_mentioned Average number of hashtags in tweets

percent_tweets_have_users_mention
ed

Percentage of tweets that mention users

avg_reply_distance Average distance between user IDs of
messages replied

duplicates Average number of times a user tweets the
same content more than once per day

avg_time_between_tweets The average amount of time between tweets

num_users_replied The number of users replied to

avg_distinct_hours_tweeted The average number of distinct hours
tweeted in a day

B. Cross-Validation Results
Positive Sample: Social Spam Bots

System Accuracy Precision Recall F1-Score AUROC Kappa Brier

AdaBoos
t
Classifier

.9833 .9889 .9825 .9857 .9952 .9655 .0142

Logistic
Regressi
on

.9257 .9008 .9808 .9391 .9722 .8439 .0567

Decision
Tree

.9775 .9872 .9741 .9807 .9781 .9535 .0233

Random
Forest

.9843 .9906 .9825 .9865 .9948 .9675 .0135

Naive
Bayes

.8357 .7934 .9721 .8736 .9424 .6446 .1283

Positive Sample: Crypto-Giveaway Bots

System Accuracy Precision Recall F1-Score AUROC Kappa Brier

41

AdaBoos
t
Classifier

0.9742 .9897 .9718 .9807 .9947 .9417 .0216

Logistic
Regressi
on

.9413 .9414 .9739 .9573 .9738 .8635 .0480

Decision
Tree

.9662 .9829 .9669 .9748 .9706 .9236 .0319

Random
Forest

.9745 .9905 .9714 .9809 .9946 .9424 .0205

Naive
Bayes

.8770 .8550 .9851 .9154 .9449 .6939 .0951

Positive Sample: Undersampled Crypto-Giveaway Bots

System Accuracy Precision Recall F1-Score AUROC Kappa Brier

AdaBoos
t
Classifier

.9752 .9884 .9627 .9753 .9943 .9504 .0194

Logistic
Regressi
on

.9451 .9254 .9704 .9473 .9867 .8899 .0517

Decision
Tree

.9697 .9752 .9652 .9702 .9739 .9394 .0273

Random
Forest

.9770 .9895 .9652 .9772 .9942 .9540 .0184

Naive
Bayes

.8448 .7724 .9864 .8663 .9486 .6875 .10465

Positive Sample: Social Spam and Crypto-Giveaway Bots

System Accuracy Precision Recall F1-Score AUROC Kappa Brier

AdaBoost
Classifier

.9736 .9895 .9764 .9823 .9936 .9247 .0212

Logistic .9212 .9178 .9872 .9512 .9187 .7480 .0654

42

Regression

Decision
Tree

.9698 .9913 .9697 .99804 .9740 .9149 .0277

Random
Forest

.9750 .9913 .9765 .9838 .9938 .9288 .0202

Naive
Bayes

.9180 .9180 .9823 .9490 .8927 .7394 .0723

Positive Sample: Undersampled Social Spam and Crypto-Giveaway Bots

System Accuracy Precision Recall F1-Score AUC/RO
C

Kappa Brier

AdaBoos
t
Classifier

.9758 .9866 .9681 .9772 .9935 .9514 .0210

Logistic
Regressi
on

.9030 .8844 .9423 .9123 .9738 .8040 .0743

Decision
Tree

.9710 .9823 .9629 .9727 .9728 .9418 .0266

Random
Forest

.9782 .9886 .9706 .9795 .9939 .9562 .0193

Naive
Bayes

.7942 .7275 .9856 .8368 .9248 .5746 .1777

Olabode Anise
@JustSayO
Olabode is a Data Scientist at Duo Security where he wrangles data, prototypes data-related
features, and makes pretty graphs to support engineering, product management, and
marketing efforts. Prior to Duo, Olabode studied usable security at the University of Florida.
When he’s not at work, he spends his time exploring data involved topics such as sports
analytics, relative wages and cost of living across the United States.

Jordan Wright
@jw_sec
Jordan Wright is Principal R&D Engineer at Duo Security as a part of the Duo Labs team. He
has experience on both the offensive and defensive side of infosec. He enjoys contributing to
open-source software and performing security research.

43

https://twitter.com/JustSayO
https://twitter.com/jw_sec

