TRITON: The First ICS Cyber Attack
on Safety Instrument Systems

Understanding the Malware, Its Communications and Its OT Payload

Alessandro Di Pinto, Younes Dragoni, Andrea Carcano
Black Hat USA 2018 - Research Paper

Table of Contents

N 1 = To3 PP P PRSPPI 1
2. Introducing SIS and the TRITON cyber attackccceeiiiiiiiiiiiii e 2
2.1. SIS (Safety INStrumented SYSIEMS)ccooi i a e e e 2
2.2. The TRITON cyber attack and wWhy it IS IMPOITANTcoveiiiiiiieiie e 2
2.3. The key components Of the attackccuueieiiie i 3
3. Understanding TRITON through Reverse ENgiNEeringccccceviireeeeniiiieeee e 4
31. Turning an 6Undocument ed .Dewv.i.c.eb..i.nt.o..ma#liciou
3.2. Obtaining the TRITON enginNering tOOISEL.........cccuiiieiiiiiieiiiiee e 5
3.3. Obtaining the TrCONEX CONTOIIETccoiiiiieee e 5
3.4. Reverse engineering the TriStation SUITEcoiiii i 7
3.5, UNAOCUMENLEU POWET USEIS ..coeiieiiieeiiiieeeeaiteee e s ettt e e ettt e e st e e e e e e e e s st e e e ssbe e e e e annneeeeennnees 9
3.6. Understanding the TriStation ProtOCOL............uuuuuuueriiieieierereirirrrerrrrrrrrr———————————.- 12
3.7. Parsing the Triconex hardware definitioN.............oocuiiiiiiiiie e 13
3.8. TriStation protocol stack implementationc.ooccciiiiiie e 14
4. Defending against TRITON: new tools to help ..., 15
4.1. Wireshark dissector (LUA script) for TriStation protoCol............cooviiciiiieiiieeiiiiiiieiee e 15
4.2. Triconex Honeypot Tool: simulating a real Triconex Controller............cccccviveeiiiiieeeiiiinenn. 16
5. Demonstrating a working malicious TRITON payload...........cccccvvvvviiiiiiniiiiiiiiiiieenn, 17
51. TRI TON&ds malicious .p.ay.l.oad.. . wa.s...mi.s.s.i.ng... 17
5.2. Demonstrating a working TRITON malicious payload.............ooccuvieieeeeeiiiiiiiee e 18
6. What TRITON means for securing Industrial Control Systems..........ccccccceveeveeeeennn. 19
Appendix AT Triconex Hardware Definition LiStccccceiiiiiiiiiiiiiic e 20
(=TT o1 Ko Yo T =T o] 4 Y20 PP 25
ADOUL the AULNOIS ..o e 26

ADOUL NOZOMIT NI O K S < e et e e e e e e e e e et e e e e e e aaaaas 26

1. Abstract

In December 2017 it was reported that a Middle Eastern oil and gas petrochemical facility ™ had undergone a
safety system shutdown as the result of a malware attack. The malware, named TRITON (also known as TRISIS
or HatMan), went beyond other industrial cyber attacks by directly interacting with a Safety Instrumented System
(SIS). SIS are the last line of automated safety defense for industrial facilities, designed to prevent equipment
failure and catastrophic incidents such as explosions or fire.

Based on the significance of this industrial cyber attack, it warranted an in-depth analysis. We were determined
to understand the TRITON malware itself, as well as the resources it took to create it. We also sought to gain
insights that would help industrial operators defend their control systems from such attacks in the future.

Our challenge was to learn how to turn an undocumented device i the Triconex controller from Schneider
Electric, which was the target of the attack i into malicious code. To do so we first focused on obtaining the
TRITON engineering toolset. We combined Internet sleuthing with asking the right people the right questions, to
obtain the information we needed.

Our next hurdle was obtaining the Triconex controller. Employing a variety of global ecommerce websites, we
purchased the components needed and assembled them into a working environment. We were unable to find
one key component i the marshalling cables, but we overcame that problem by using brute force to directly
connect two panels.

Now that we had a working system, we proceeded to reverse engineer the TriStation suite of software used on
the engineering workstation that communicates with the SIS controller. That activity, combined with malware
analysis, allowed us to deeply dissect the TriStation proprietary communication protocol used by the Triconex
controller.

Our findings allowed us to develop two new tools 1 to help the ICS community secure Triconex SIS. The first
tool, the TriStation Protocol Plug-in for Wireshark, allows an engineer to visually see and comprehend
TriStation communications. It also identifies hardware connected to the safety controller and passively detects
TRITON activity in network communications.

The second tool, the Triconex Honeypot Tool, can be used by defense teams to simulate SIS controllers on
the network, using them like a honeypot [? to detect reconnaissance scans and capture malicious payloads.

While the TRITON malware attack failed to deliver a malicious OT payload, we successfully used its capabilities
to implement new programs in the Triconex controller and to execute a malicious payload.

Our research shows that the effort, skills and financial resources needed to create the TRITON malware are not
that highi certainly not at the level where nation state-sponsored resources are required. Knowing this, industrial
asset owners should act immediately to monitor their SIS and secure them against external attacks. We also
urge SIS equipment makers to provide more robust built-in security for these vitally important systems.

2. Introducing SIS and the TRITON cyber attack

2.1. SIS (Safety Instrumented Systems)

Safety Instrumented Systems (SIS), also known as Industrial Safety Systems, are designed to prevent
industrial incidents, such as equipment or operational failures, from causing damage, injury, loss of life, or
serious environmental harm. Examples of extreme consequences would be explosions, fires, oil spills, floods
or even nuclear system meltdowns.

The equipment used in SIS are a special type of PLC (Programmable Logic Controllers) designed with
predictability and reliability in mind. They include multiple main processors, built-in diagnostics, redundancy
management systems, and failure detection for inputs and outputs 1. Best practices for securing SIS include
running them on isolated networks and carefully restricting access rights.

If out-of-range operating conditions occur, SIS perform control functions that shut the process down in a safe,
predictable way. Also, while designed to never fail, should an SIS failure actually occur, it will do so in a
predictable manner. Thus, the worst-case scenario is known and planned for ahead of time.

SIS are the last line of automated defense for industrial facilities, though it should be noted that mechanical
fail-safes also exist.

2.2. The TRITON cyber attack and why it is important

In December 2017, FireEye reported [that it had recently worked with an industrial operator whose facility was
attacked by a new type of ICS malware, which they named TRITON (other organizations have named it TRISIS
or HatMan). Pl

The attack reprogrammed the facilityds SIS controllers,
automatic shutdown of the industrial process. The investigation following the shutdown led to the detection of
the hacking attempt.

The targeted facility was subsequently identified as a Saudi Arabian petrochemical processing plant B while the
SIS that was attacked was a Triconex Safety Instrumented System from Schneider Electric. This type of SIS is
commissioned in a consistent way across many industries and is widely used. [©

TRITON is one of only a handful of malware with the ability to impact the physical process of an industrial control
system. Previous examples include Stuxnet [1 (lran, uranium enrichment centrifuges, 2010) and
Industroyer/Crash Override ® (Ukraine, power grids, 2015 and 2016).

TRITON goes well beyond earlier attacks and is considered a milestone industrial cyber attack because it directly
interacts with, and controls, SIS. It raises the possibility of a cyber attack leading to unpredictable and dangerous
plant outcomes, without the protection of a last line of safety defense.

Based on the significance of this industrial cyber attack, the Nozomi Networks security research group decided
to do an in-depth analysis of it. We were determined to understand TRITON and the resources needed to create

it. We also sought to gain insights that would help industrial operators defend their control systems from such
attacks in the future.

2.3. The key components of the attack

The attack began with penetration of the IT network using well-documented ! easily-detected attack methods.
The attackers moved to the OT (Operational Technology) network through systems that were accessible to both
environments.

Once on the OT network, the threat actors were able to infect the engineering workstation for the SIS system,
usually situated in an isolated network segment. The infection probably used a social engineering technique

wher eby the engineer received or downl oad e dtriog. efxi€hée.

name suggests that the dropper file is a clean executable dealing with something related to Triconex and its
logging capabilities (TRIconex LOGging filename).

The main purpose of the dropper file was to deliver the malicious payload into the target, in this case the SIS
controller. Soon after the execution, the dropper connected to the targeted Triconex, injecting the real malware

payload inside its memory.

The malware payload was contained in two separate binary files called inject.bin and imain.bin. One of the
actions taken by the dropper was to read, inject and execute these files into the memory of the Triconex.

1 inject.bin contained the code which exploits a specific 0-day in order to execute the content of the file
"imain.bin".

1 imain.bin contained the final code that allows a remote user to gain full control of the SIS device.

Following is reported information about the malicious files involved in the infection phase:

Filename MD5 Component
trilog.exe 6c39c3f4a08d3d78f2eb973a94bd7718 Dropper
inject.bin 0544d425¢7555dc4e9d76b571f31f500 Backdoor injector
imain.bin 437f135bal179959a580412e564d3107f Backdoor code

The dropper was developed in Python and compiled inside the trilog.exe executable. It contains the
implementation of the TriStation protocol reverse-engineered by the threat actors and used to interact with the
targeted device.

The first action performed by the researchers who got the TRITON sample was to decompile the executable,
extract the Python code, and use it as the starting point for the further analysis.

wi t h

“Your wishis my

" Qs

command @ N
Eng. Workstation

trilog.exe TriStation protocol
* script_test.py
* library.zip

imain.bin + inject.bin

* inject.bin
* imain.bin

Figure 1 - A schematic view of the dropper phase of TRITON

3. Understanding TRITON through Reverse Engineering

3L.Turning an O0Urbekwd intedalicieus code

Despite the routine techniqgues employed to gain access
the TRITON malware attack had to go through a significant learning curve. They had to learn about the Triconex
SIS controller itself and TriStation, the proprietary network communication protocol it uses.

Obtaining both the Triconex hardware and software related to it was essential for recreating the full working
environment needed for experimenting and writing malicious code. With a working system, the threat actors
were able to intercept and analyze traffic transmitted on the wire. They were also able to reverse engineer the
TriStation software.

Both methods were needed to dissect the proprietary protocol, extracting information from it and re-implementing
it inside TRITON.

To study TRITON ourselves, we needed to recreate the targeted SIS in our lab environment and obtain as much
documented information as possible about its functioning and communications. The following sections describe
how we went about this.

3.2. Obtaining the TRITON engineering toolset
We used multiple channels to procure the necessary components, as follows:

1 Vendor website i the Schneider Electric website contains useful information
1 Consultation with key experts i sometimes asking the right person, nicely, is effective
1 Asset owners 1 operations and security staff are our friends i and the best sources of information!
1 Internet searches i there is a lot of freely available information, such as:
- Installation CDs sold on e-commerce sites
- Loose executables & archives on forum sites
- Open directories, FTP servers, etc.

In short, a combination of Internet sleuthing and asking the right people the right questions allowed us to obtain
a great deal of the information required.
3.3. Obtaining the Triconex controller

Of course, the key item we needed was a Triconex contro
some money. A budget of $5-10K is required i the reality is that most ICS equipment is expensive.

Another thing we took into consideration was getting multiple copies of the controller for teardown purposes i
and in case we bricked (damaged) one, and it no longer worked.

Here are some of the sources we considered for acquiring the SIS controller:
1 Fromthevendori i t 6 s p o s snevbelqupmenodirdetly from Schneider Electric, but it is not the
least expensive way.
1 From online e-commerce sites such as eBay or Alibaba i we found components and used devices on

these sites. In some cases, new ones were listed for sale, including full-warranties.

We needed to keep in mind that the systems had to be compatible for everything to work together, and we
needed the same model that was used in the TRITON attack. The TRITON vulnerable SIS controllers are:

1 Triconex MP3008 main processor modules running firmware versions 10.07 10.4 [

Note that these models of the Triconex use a MPC860 PowerPC processor. Newer models use a different
processor (ARM) and are thus not vulnerable to the version of TRITON we studied.

The equipment used for our research is described below.

Main Low-Density Chassis:

1.02 3008/N Tricon Enhanced Main Processor v10.3 - Firmware Meta Number: ETSX6236
1.05 4329/N/G NCM (Network Communications Module)

1.09 3503/E/EN Discrete Input, 24 V, 32 points

1.10 Marshalling Connector 2652 -310 DO

1.12 3604/E/EN Discrete Output, 24 VDC, 16 points

Terminator Panel 2652-1

= =4 =4 4 -8 A

We also tested the injection phase and did some analysis with the 3008/N Tricon Enhanced Main Processor
v9.10 BUILD 66.

One item needed was the marshalling cables, which are used to connect the terminal panel to the connector
module. This allows communication with field devices through the digital output module.

1 We wanted to get this communication to work so that we could test variations of TRITON that would
succeed in delivering commands that disrupt the safety process, as described in Section 5.

It turned out to be the only equipment challenge we had i it seems marshalling cables are very hard to find.

Figure 2 - Marshalling cables were impossible to locate

Since we were unable to locate the cables, the only solution was to manually, using brute force, connect the
terminal panel directly to the connector module. Fortunately, it worked!

Figure 3 - Lacking the marshalling cables, these two boards were directly connected.

3.4. Reverse engineering the TriStation suite

The software installed on the engineering workstation is a gold mine for threat actors because it contains all the
information needed to interact with the controller, including how to recognize different statuses and attached
modules. TriStation 1131 v4.9.0 (build 117) is able to connect with the hardware version targeted by the malware,
and all of our analysis has been performed on that version.

The Schneider Development Team has kindly included useful information about their files i which unfortunately
can also be used by an attacker to better understand the software architecture and its general structure.

Starting with a detailed description of every file installed by the software, it is quite simple to understand where

to look for different

Home

ot

components.

Share

1 s TriStation 1131490 »

P
Mame

24 InstallCheck.exe

lagarc.dll
lagasm.dll
lagcom.dll
lagdwag.dll
lagemi.dll
laggen.dll
laghwdlg.dll
laglnk.dIl
lagpim.dll
LOADDLC.dII
@tmemdde.a&
2 TCXEMX.chm
'T.- toxemx exe
triarc.dll
triasm.dll
tricom.dll
trlemi.dll
trigen.dll
trihwdlg.dll

triink.dll

View

Size

&1 KB
20 KB

92 KB
128 KB
156 KB
132 KB
00 KB
T36 KB
00 KB
2.076 KB
AD KB
A4 KB
2218 KB
340 KB
80 KB
104 KB
108 KB
128 KB
124 KB
1.048 KB
00 KB

Programs

File description
T51131 Install Check

Trident Code Archiver, Non-MFC DLL
Trident Code Assembler, Mon-MFC DLL
Trident Communication Interface
Trident HW Drawing Services

Trident Code Interpreter, Mon-MFC DLL
Trident Code Generator, Mon-MFC DLL
Trident HW Setup Services

Trident Code Linker, Non-MFC DLL
Trident T51131 Application Interface

Triconex Emulator DDE Client

EM Code Emulator

Tricon NC Archiver

Tricon NC Assemnbler

Tricon Communications Interface
Tricon EM Interpreter

Tricon MC Generator

Tricon HW Setup Dialogs

Tricon MC Linker

Figure 4 - The TriStation suite files are nicely identified

3.5. Undocumented power users

The TriStation software also stores project files containing key information about the Triconex program,
configuration and behavior inside a password-protected file with .PT2 extension. The assumption is that only
authorized engineers can access the project files containing the proprietary code executed inside the SIS
devices.

However, the TriStation software v4.9.0 (and prior versions), also contain two undocumented power users able
to open any project file regardless of the robustness of its password. These users are likely used by the product
support team to help customers with technical issues. While having operational value, these users can also be
abused by threat actors to access password-protected project documents without the proper credentials.

The two undocumented users are:
T****FD
T****BD

For user T****FD, the login requires a password that is available through reverse engineering and additional
authentication in the form of a support ticket number. This confirms that the role of the user is for customer
support purposes.

IE TriStation 1131 =10 x|
File Edit View Project Tools Window Help

o|=| m=im #= 2aee)] sl

T armacs 2 mark AF Haa memiact oo ransb bireb lea s Tha

Entericket K|

A ticket iz special identifier that allows you to access a project for
which the user name and password is unknown. The ticket is

valid for a one time Log On to a project and is only avaliable from
vour Tricones Technical Support Representative.

Ticket: ||

| H]8 I Cancel

Figure 57 Undocumented user T****FD requires the extra step of a support ticket number to login

User T***BD however, has the capability to access a project file just by inserting the hard-coded credentials
extracted from the TriStation software.

Project Log On: DEMO-LED [X| |

To access any part of the project you must first log on. The
project manager creates user accounts for each project.

Your log on name will be used to track project activity,
changes, and access rights.

Log on Name: [ix{=»)Neay s}

Easswofd' Ixxxxxxxxxx

Session ID: 1DC44991

|Log0n| Cancel | Help I

Figure 6 1 Undocumented user T****BD accessing a password protected project file with its static password

Once user T****BD is logged in, a hidden menu is enabled that is not available to other users.

@ TriStation 1131 - DEMO-LED
File Edit View Project Tools Window Help

m B @ ml vl Sl el -l
g TriStation 1131 Options
S — i ies Back Door i i i
= D P Directories | CEM Editor I Drawing Colors | FBD Editor | LD Edtorl
L] use — General
(3 Libr. IV inLine/DOther E ditors: Data Types: ¥ Show Context Help IDs
d v et Element Editing v FReport mors
(2 7ag v SheetEl Editi v R DDEE
2 E wd ¥ Secuty Element Attibutes ¥ Enable Hidden Variables
I unn ¥ Retain TMP Directory [V Disable ST default text
@- Imp ¥ Force UpdateReplace [V Compact Project On Close
— On Rebuild All Debug Messages
[V Include Asse.rrbb far Tti_cnn_ & None © Brief Verbose
[v Remake Native Code Libraries
' Emulator Link Specification ¢ Platform Link Specification Default Spec |
t1libhm.emo, ZPINST, ZPR0OJ, ZSLIB, tx1lib.ema, stdlib.ema, t«1libt.ema tx1libtrm.ema
oK I Cancel Help
B Application
For Helo. press F1 DOWHLOAD CHANGE | wom [

Figure 71 A hidden menu is enabled after logging-in as user T****BD

10

From an attacker 6 s p rcouldpe uséfil. The hiddenhmesu pmwdesnaacess o a great
number of extra features not available to a normal user.

Moreover, when logged as T***BD, the TriStation software exposes internal information about the
linking/compilation phases of the system logic. This additional data has a high value for threat actors because it
describes in detail the commands involved during program compilation.

log_manager.txt (& ¥ log_superuser.txt &
1| wEEEAEE BUILDING AFPPLICATION CHANGES **##*#*#% 2 S + trlass -u -= LIBDBG.ERR -o LIBDBG.NHCO LIBDBG.ASM
2 »» Verifying the wversions of compiler, linker, assemble 580 + trlarch -e ~TR1ARCH.ERR r Tx1libt.NCA LIBDBG.HNCO
3 Validating all tagnames... 581 + ...DEMO-LED : Project.EMA
4 Verifying all installed editors... 582 + iecarch -e ~IECARC.LST t Project.EMA
5 »»> Building Configuration... 583 + ...0000014f.EMO
6 ++ Initializing program 'blink led'... 584 + iecarch -e ~IECARCH.ERR x Project.EMA 0000014f.EMO
T » Creating program instances 585 + trlncg -e& 0000014f.ERR 0000014f.EMO 0000014f.ASM
8 >> Generating executable coded€) 586 + trlass -u -= 0000014f.ERR -o 0000014f.NCC 0000014f.ASM
9 >> Assembling Libraries for Tricon... 587 + trlarch - ~TR1ARCH.ERR r Project.NCA 0000014f.NHCO
10 > Linking for Tricon... =l + trlarch -e ~TR1ARCH.ERR d Project.NCA 0000014f.NHCO
11 >> Validating symbols... 589 + ...00000155.EMO
12 The estimated stack size is 532 bytes. 5580 + iecarch -e= ~IECARCH.ERR x Project.EMA 00000155.EMO
13 0 ERRCR(s), 0 WARNING(s) 54l + trlncg -e 00000155.ERR 00000155.EMO 00000155.A5M
14 592 + trlass -u -e 00000155.ERR -o 00000155.WCC 00000155.ASM
15 583 + trlarch -e ~TR1ARCH.ERR r Project.NCA 00000155.HCO
16 Initialization Table Information 594 + trlarch -e ~TR1ARCH.ERR d Project.NHCA 00000155.HCO
17 585 + trincg -e ~blink led.ERR ~blink led.EMO ~blink led.ASM
18 The total # of bytes in the current project are as folll 596 + trlass -u -e ~blink led.ERR -0 ~blink led.NCO ~blink led
19 2 * g = 16 (overhead)+ 5a7 ++ Extracting code files...
20 BOOL: 2 + 598 + ...ALARMS5.EMA Copied from project
21 DINT: 0% 4= 0+ EEE + ...TCXLIB.EMA Copied from project
22 REAL: 0o a= 0 + 600 + ...5TDLIB.EMA Copied from project
23 TIME: 0O*8 = 0 + 601 + ...TX1LIB.EMA Copied from project
24 TOTAL: 18 602 + ...Tx1libhm.emo Copied from project
25 603 + ...Txllibhp.nco Copied from project
26 >> Backing up project to 'DEMO-LED &8 0 5b55e88b.DWLD' 604 + ...Txllibt.ema Copied from project
27 605 + ...Txllibtm.ema Copied from project
606 + ...Tx1libtp.nca Copied from project
607 + ...Tx1libt.NCA Copied from project
608 + ...TX1LIB.NCA Copied from project
609 + ...5TDLIB.NCA Copied from project
610 + ...TCXLIB.NCA Copied from project

611 + ...RLARMS5.NCA Copied from project

€12 >> Assembling Libraries for Tricon...

613 > Linking for Tricon...

614 + trllnk -e Platform.ERR -t —x ~LNKAUX.S5YM -p ~LNESPEC.S5YM
€15 + trlseg -e ~TRISEG.ERR -o ~TR15EG.COUT Platform.NCE

616 >> Validating symbols...

617 The estimated stack size is 532 bytes.

613 0 ERROR(s), 0 WARNING (s)

619

620

621 Initialization Table Information
622

€23 The total # of bytes in the current project are as follows:
624 2 *8= 16 (overhead)+
€25 BOOL: 2 +

626 DINT: 0~ 4= 0+

€27 REAL: 0* 4 = o+

628 TIME: 0*38-= o+

€29 TOTAL: 18

Figure 71 The difference between the information available to a normal user (left)
and the undocumented power user T****BD (right)

The level of information available to this undocumented power user makes it significantly easier for threat actors
to create malicious OT payloads. However, our research found no connection between the TRITON malware
and this hidden menu, and the malware did not leverage these undocumented users.

It should be noted that these undocumented users exist for TriStation 1131 v4.9.0 and earlier versions only,
according to Schneider Electric.

11

3.6. Understanding the TriStation protocol

In accordance with the file descriptions, the code delegated to manage the network communication is located

inside the DLBy datnrallcyozm.ndgl Itohi s f il e,
definition that documents its behavior.

we

extracted

1[int _ thiscall CAPLTricon::SendMessageA(CAPLTricon *this, int a2, unsigned int8& *a3, int a4)
21
3| // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
4
5 w4 = this;
6| if (*((_WORD *)this + 274) »>= 1lu)
|1
] v5 = sub_1@B@S3BB(a2);
9 CAPLTricon: :DisplayDebugMessage(v4, 1u, aReqS, vS);
18| 3
11| wE = *(({_DWORD *)va + 15@);
12| ++*({_DWORD *)v4 + 151);
13 if ((wvE == 2)
14| {
15 vl = @;
16 w1l = (char *)v4 + 1828;
17 if (a4)
18
19 gmemcpy(v1l, a3, ad);
20 v1l@ = @;
21 *({_WORD *)vd + 918) = ad;
22 1
23 else
24 {
25 *((_WORD *)v4 + 918) = 1@;
26 1
27 #((_BYTE *)ud + 1831) = *({(_EYTE *)ud + 595);
28 w12 = *({_WORD *)v4 + 918);
29 *({_BYTE *)v4 + 183@) = aZ;
EL: w13 = w123
31 *((_WORD *)v4 + 016) = @;
32 *({_WORD *)v4 + 917) = @;
33 *y11 = @3
34 ®((BYTE *)v4 + 1829) = @;
35 if { (signed int)vi2 > @)
36 {
37 do
38 w12 4= (unsigned _ int8)v1l[vle++];
39 while (v1® < w13 };
40 3
41 *((_WORD *)v4 + 917) = viZ;
42 #((BYTE *)v4 + 593) = 2;
43 CAPLTricon::SetState(v4, stateRunning|statePaused);
e CAPLTricon: :DumpMessage(v4, aSend, (CAPLTricon *)((char *)wv4 + 1828));

Figure 8 - Decompiled code showing low-level packet management

12

a

we

3.7. Parsing the Triconex hardware definition

The Low-Density and High-Density chassis used by the Triconex hardware supports several different modules

whi

ch

ar e

descri

bed

i nsiTREHWRBEF.BIWDROp. r i Tehtea r nga | fw atoe&incdagl el se dn ofi

information related to the hardware definition, probably because the threat actors did not invest time to reverse
engineer that part.

However, the definition file contains useful information for network traffic analysis that identifies which modules
are attached to the remote Triconex hardware.

We invested time in reverse engineering, and successfully parsed the hardware information. The details are
given in Appendix AT Triconex Hardware Definition List.

=

[
P T2 I -

SO T)
N

Reading info from TR1HWDEF.HWD

0x0001| 1| ¥P|Tricon Main Processor|3006/N,3007
{Aliased RO) |None
{Aliased RW) |None
{Non-aliased) |None
(Aliased ROQ) |None
({Aliased RW) |None
{(Non-aliased) | None
{Aliased RO) |None
{Aliased RWV) |None
(Non-aliased) |None
NA|LOCAL (Non-aliased) |None
0x0003| 1| Empty:Slot|Empty| -——-

0x0001] 2| BOOL;
0x0002|2|BOOL;
0x0003] 2| BOOL:
0x0004| 2| DINT:
0x0005] 2| DINT:
0x0006]2 | DINT:
0Ox0007] 2| REAL;
0x0008] 2 | REAL:
0x0009| 2| REAL;
0x0020]| 2| DATA;

RO| BOOL
RW| BOOL
NAi| BOOL
RO|DINT
RW|DINT
NA|DINT
RO|REAL
RW| REAL
NA|REAL

0x0004] 1| Unused;Slot|Unused|----

0x0001]|0|DI
0x0002|0|DI
0x0003]|0|DI
0x0007]0|DI
Ox000b|OJDI :23
0x0011]0|DO ;11
0x0013]0|D0O ;12
0x0014|0|DO ;24
0x0017|0| DO ;48
0x0018|0| DO ;48
0x001d|0| DO ;24
0x001e|0|DO ;48
Ox001r|0|DO 11
0x0020] 0] AI
0Ox0021|0] AT

;11
;48
;24
;24

5:V |Discrete
:V |Discrete
:V |Discrece

V:LT |Discrete

0;V |Discrece

5:VAC|Discrete
0;VDC|Discrete
:VDC|Discrete
;VAC|Discrete
;VDC|Discrete
;VDC|Discrece
:VDC|Discrete
S;VAC|Discrete

Inpuc,
Input,
Inpuc,
Input,
Inpuc,
Output,
Output,
Output,
Output,
Output,
Output,
Qutput,
Output,

;0- :10ViAnalog Input, 10
;0= ;SV |Analog Input, S

00 ©7 00 91 G0 01 00 02 00 92 02 03 00 03 00 G4
00 94 00 05 00 95 00 86 00 96 99 07 00 07 00 4D NPT M
50 07 0@ 97 00 08 44 49 20 3B 32 34 56 3B 4C 54NN DI-;24V;LT
@ 2E 44 69 73 63 72 65 74 65 20 49 6E 70 75 74NNV IO IR T4
C 20 32 34 20 56 2C 20 4C &F 77 20 54 68 72 cSIRPYRVRNTITE (T
3 68 6F 6C B4 2C 20 33 32 20 79 6F 69 6E 74 73T L IEE YIS T 1<
29 3 36 2F AS .35@5/E/EN......
0 08 3 ee $@....

screte-Input,-23
@-Vv,+32-points.3

115 V, 32 points|
48 V, 32 points|:
24 V, 32 points|3
24 V, Low Threshc
230 V, 32 pointcs| 6l

115 VAC, 16 points|3601/E/T/TN
120 VDC, 16 points|3603/B/E/T/TN
24 VDC, 16 points|3604/E/EN

48 VAC, 16 points|3608/E

48 VDC, 16 points|3607/E/EN

24 VDC, 16 points|6603

48 VDC, 16 points| 6602

115 VAC, 16 points|6601

V input, 32 points|3701/N

V input, 32 poincs|3700/4/AN

Figure 9 - Automatic parsing of the file that describes Triconex hardware information

We also added this parsing capability to our Wireshark dissector (see section 4.1), which thus provides
information about deployed Triconex hardware modules.

13

3.8. TriStation protocol stack implementation

TriStation is not only the software suite used inside the engineering workstation. There is also a proprietary
network protocol called firriStation Protocoldoperating on UDP/IP over port 1502.

The malware files related to TriStation implementation are found inside these files:

Filename MD5 Compilation time
TsBase.pyc 288166952f934146be172f6353e9alf5 2017-08-03 16:52:33
TsHi.pyc 27c69aa39024d21eal09cc9c9d944a04 2017-08-04 08:04:01
TsLow.pyc féb3a73c8c87506acda430671360cel5 2017-08-03 16:46:51
TS_chames.pyc €98f4f3505f05bf90e17554fbc97bba9 2017-08-03 12:26:36

All the protocol definitions are contained inside the Python-compiled file ATS_cnames.pycdand can be easily
decompiled and extracted as shown in the image below. The code contained in the file is a great explanation of
the function codes implemented by the TriStation protocol, showing how deep the threat actors went during
reverse engineering.

1 = TS_cst = {1: 'CONNECT REQUEST',
2: 'CONNECT REPLY',
¢ 'DISCONN REPLY',
'DISCONN REQUEST',
'COMMAND REPLY',
'PING',
‘CONN LIMIT REACHED',
¢ 'NOT CONNECTED',
: '"MPS ARE DEAD',
10: 'ACCESS DENIED',
11: 'CONNECTION FAILED'
}

_keystate = {@: 'STOP',
'PROG',

'RUN',

'REMOTE",

'INVALID'

rogstate = {0: 'RUNNING',
'"HALTED',

'"PAUSED',

'EXCEPTION'

l
“— WINPT Y h_rWNPRP

Figure10-Part of TR Tcaé dhewing yriStatmmprotocol states

14

Combining the malware analysis with reverse engineering activity performed with the workstation software, we
were able to deeply dissect the TriStation protocol. It allows for communications between engineering
workstations (master) and Triconex controllers (slave), equipped with specific network modules (NCM).

Through our reverse engineering of the Triconex we were able to develop tools for helping industrial
organizations and researchers understand SIS communications (section 3.6), and create and demonstrate a
malicious TRITON payload (section 5).

4. Defending against TRITON: new tools to help

4.1. Wireshark dissector (LUA script) for TriStation protocol

During our analysis, we developed an extended Wireshark dissector using Lua script, called the TriStation
Protocol Plug-in for Wireshark. 2

It offers several useful features for engineers working with the TriStation protocol:

Indication of the direction of communication

Function codes translated as descriptive text

Extraction of transmitted PLC programs

Identification of connected hardware

Detection of the TRITON malware in network communications

[€]

=A =4 =4 =4 4

Figure 11 - The TriStation protocol plug-in for Wireshark detects a sample of TRITON during the injection phase

15

