

TRITON: The First ICS Cyber Attack

on Safety Instrument Systems
Understanding the Malware, Its Communications and Its OT Payload

Alessandro Di Pinto, Younes Dragoni, Andrea Carcano

Black Hat USA 2018 - Research Paper

Table of Contents

1. Abstract .. 1

2. Introducing SIS and the TRITON cyber attack .. 2

2.1. SIS (Safety Instrumented Systems) .. 2

2.2. The TRITON cyber attack and why it is important .. 2

2.3. The key components of the attack .. 3

3. Understanding TRITON through Reverse Engineering ... 4

3.1. Turning an óUndocumented Deviceô into malicious code .. 4

3.2. Obtaining the TRITON engineering toolset ... 5

3.3. Obtaining the Triconex controller .. 5

3.4. Reverse engineering the TriStation suite .. 7

3.5. Undocumented power users ... 9

3.6. Understanding the TriStation protocol... 12

3.7. Parsing the Triconex hardware definition .. 13

3.8. TriStation protocol stack implementation .. 14

4. Defending against TRITON: new tools to help .. 15

4.1. Wireshark dissector (LUA script) for TriStation protocol ... 15

4.2. Triconex Honeypot Tool: simulating a real Triconex Controller .. 16

5. Demonstrating a working malicious TRITON payload ... 17

5.1. TRITONôs malicious payload was missing .. 17

5.2. Demonstrating a working TRITON malicious payload .. 18

6. What TRITON means for securing Industrial Control Systems 19

Appendix A ï Triconex Hardware Definition List .. 20

Bibliography ... 25

About the Authors ... 26

About Nozomi Networks ... 26

1

1. Abstract

In December 2017 it was reported that a Middle Eastern oil and gas petrochemical facility [1] had undergone a

safety system shutdown as the result of a malware attack. The malware, named TRITON (also known as TRISIS

or HatMan), went beyond other industrial cyber attacks by directly interacting with a Safety Instrumented System

(SIS). SIS are the last line of automated safety defense for industrial facilities, designed to prevent equipment

failure and catastrophic incidents such as explosions or fire.

Based on the significance of this industrial cyber attack, it warranted an in-depth analysis. We were determined

to understand the TRITON malware itself, as well as the resources it took to create it. We also sought to gain

insights that would help industrial operators defend their control systems from such attacks in the future.

Our challenge was to learn how to turn an undocumented device ï the Triconex controller from Schneider

Electric, which was the target of the attack ï into malicious code. To do so we first focused on obtaining the

TRITON engineering toolset. We combined Internet sleuthing with asking the right people the right questions, to

obtain the information we needed.

Our next hurdle was obtaining the Triconex controller. Employing a variety of global ecommerce websites, we

purchased the components needed and assembled them into a working environment. We were unable to find

one key component ï the marshalling cables, but we overcame that problem by using brute force to directly

connect two panels.

Now that we had a working system, we proceeded to reverse engineer the TriStation suite of software used on

the engineering workstation that communicates with the SIS controller. That activity, combined with malware

analysis, allowed us to deeply dissect the TriStation proprietary communication protocol used by the Triconex

controller.

Our findings allowed us to develop two new tools [2] to help the ICS community secure Triconex SIS. The first

tool, the TriStation Protocol Plug-in for Wireshark, allows an engineer to visually see and comprehend

TriStation communications. It also identifies hardware connected to the safety controller and passively detects

TRITON activity in network communications.

The second tool, the Triconex Honeypot Tool, can be used by defense teams to simulate SIS controllers on

the network, using them like a honeypot [12] to detect reconnaissance scans and capture malicious payloads.

While the TRITON malware attack failed to deliver a malicious OT payload, we successfully used its capabilities

to implement new programs in the Triconex controller and to execute a malicious payload.

Our research shows that the effort, skills and financial resources needed to create the TRITON malware are not

that high ï certainly not at the level where nation state-sponsored resources are required. Knowing this, industrial

asset owners should act immediately to monitor their SIS and secure them against external attacks. We also

urge SIS equipment makers to provide more robust built-in security for these vitally important systems.

2

2. Introducing SIS and the TRITON cyber attack

2.1. SIS (Safety Instrumented Systems)

Safety Instrumented Systems (SIS), also known as Industrial Safety Systems, are designed to prevent

industrial incidents, such as equipment or operational failures, from causing damage, injury, loss of life, or

serious environmental harm. Examples of extreme consequences would be explosions, fires, oil spills, floods

or even nuclear system meltdowns.

The equipment used in SIS are a special type of PLC (Programmable Logic Controllers) designed with

predictability and reliability in mind. They include multiple main processors, built-in diagnostics, redundancy

management systems, and failure detection for inputs and outputs [3]. Best practices for securing SIS include

running them on isolated networks and carefully restricting access rights.

If out-of-range operating conditions occur, SIS perform control functions that shut the process down in a safe,

predictable way. Also, while designed to never fail, should an SIS failure actually occur, it will do so in a

predictable manner. Thus, the worst-case scenario is known and planned for ahead of time.

SIS are the last line of automated defense for industrial facilities, though it should be noted that mechanical

fail-safes also exist.

2.2. The TRITON cyber attack and why it is important

In December 2017, FireEye reported [4] that it had recently worked with an industrial operator whose facility was

attacked by a new type of ICS malware, which they named TRITON (other organizations have named it TRISIS

or HatMan). [5]

The attack reprogrammed the facilityôs SIS controllers, causing them to enter a failed state, and resulting in an

automatic shutdown of the industrial process. The investigation following the shutdown led to the detection of

the hacking attempt.

The targeted facility was subsequently identified as a Saudi Arabian petrochemical processing plant [5], while the

SIS that was attacked was a Triconex Safety Instrumented System from Schneider Electric. This type of SIS is

commissioned in a consistent way across many industries and is widely used. [6]

TRITON is one of only a handful of malware with the ability to impact the physical process of an industrial control

system. Previous examples include Stuxnet [7] (Iran, uranium enrichment centrifuges, 2010) and

Industroyer/Crash Override [8] (Ukraine, power grids, 2015 and 2016).

TRITON goes well beyond earlier attacks and is considered a milestone industrial cyber attack because it directly

interacts with, and controls, SIS. It raises the possibility of a cyber attack leading to unpredictable and dangerous

plant outcomes, without the protection of a last line of safety defense.

Based on the significance of this industrial cyber attack, the Nozomi Networks security research group decided

to do an in-depth analysis of it. We were determined to understand TRITON and the resources needed to create

3

it. We also sought to gain insights that would help industrial operators defend their control systems from such

attacks in the future.

2.3. The key components of the attack

The attack began with penetration of the IT network using well-documented [9], easily-detected attack methods.

The attackers moved to the OT (Operational Technology) network through systems that were accessible to both

environments.

Once on the OT network, the threat actors were able to infect the engineering workstation for the SIS system,

usually situated in an isolated network segment. The infection probably used a social engineering technique

whereby the engineer received or downloaded a file with a legitimate file name, in this case ñtrilog.exeò. The

name suggests that the dropper file is a clean executable dealing with something related to Triconex and its

logging capabilities (TRIconex LOGging filename).

The main purpose of the dropper file was to deliver the malicious payload into the target, in this case the SIS

controller. Soon after the execution, the dropper connected to the targeted Triconex, injecting the real malware

payload inside its memory.

The malware payload was contained in two separate binary files called inject.bin and imain.bin. One of the

actions taken by the dropper was to read, inject and execute these files into the memory of the Triconex.

¶ inject.bin contained the code which exploits a specific 0-day in order to execute the content of the file

"imain.bin".

¶ imain.bin contained the final code that allows a remote user to gain full control of the SIS device.

Following is reported information about the malicious files involved in the infection phase:

Filename MD5 Component

trilog.exe 6c39c3f4a08d3d78f2eb973a94bd7718 Dropper

inject.bin 0544d425c7555dc4e9d76b571f31f500 Backdoor injector

imain.bin 437f135ba179959a580412e564d3107f Backdoor code

The dropper was developed in Python and compiled inside the trilog.exe executable. It contains the

implementation of the TriStation protocol reverse-engineered by the threat actors and used to interact with the

targeted device.

The first action performed by the researchers who got the TRITON sample was to decompile the executable,

extract the Python code, and use it as the starting point for the further analysis.

4

Figure 1 - A schematic view of the dropper phase of TRITON

3. Understanding TRITON through Reverse Engineering

3.1. Turning an óUndocumented Deviceô into malicious code

Despite the routine techniques employed to gain access to the victimôs OT environment, the threat actors behind

the TRITON malware attack had to go through a significant learning curve. They had to learn about the Triconex

SIS controller itself and TriStation, the proprietary network communication protocol it uses.

Obtaining both the Triconex hardware and software related to it was essential for recreating the full working

environment needed for experimenting and writing malicious code. With a working system, the threat actors

were able to intercept and analyze traffic transmitted on the wire. They were also able to reverse engineer the

TriStation software.

Both methods were needed to dissect the proprietary protocol, extracting information from it and re-implementing

it inside TRITON.

To study TRITON ourselves, we needed to recreate the targeted SIS in our lab environment and obtain as much

documented information as possible about its functioning and communications. The following sections describe

how we went about this.

5

3.2. Obtaining the TRITON engineering toolset

We used multiple channels to procure the necessary components, as follows:

¶ Vendor website ï the Schneider Electric website contains useful information

¶ Consultation with key experts ï sometimes asking the right person, nicely, is effective

¶ Asset owners ï operations and security staff are our friends ï and the best sources of information!

¶ Internet searches ï there is a lot of freely available information, such as:

- Installation CDs sold on e-commerce sites

- Loose executables & archives on forum sites

- Open directories, FTP servers, etc.

In short, a combination of Internet sleuthing and asking the right people the right questions allowed us to obtain

a great deal of the information required.

3.3. Obtaining the Triconex controller

Of course, the key item we needed was a Triconex controller. This is where ñfreeò ended and we had to spend

some money. A budget of $5-10K is required ï the reality is that most ICS equipment is expensive.

Another thing we took into consideration was getting multiple copies of the controller for teardown purposes ï

and in case we bricked (damaged) one, and it no longer worked.

Here are some of the sources we considered for acquiring the SIS controller:

¶ From the vendor ï itôs possible to buy new equipment directly from Schneider Electric, but it is not the

least expensive way.

¶ From online e-commerce sites such as eBay or Alibaba ï we found components and used devices on

these sites. In some cases, new ones were listed for sale, including full-warranties.

We needed to keep in mind that the systems had to be compatible for everything to work together, and we

needed the same model that was used in the TRITON attack. The TRITON vulnerable SIS controllers are:

¶ Triconex MP3008 main processor modules running firmware versions 10.0ï10.4 [3]

Note that these models of the Triconex use a MPC860 PowerPC processor. Newer models use a different

processor (ARM) and are thus not vulnerable to the version of TRITON we studied.

6

The equipment used for our research is described below.

Main Low-Density Chassis:

¶ 1.02 3008/N Tricon Enhanced Main Processor v10.3 - Firmware Meta Number: ETSX6236

¶ 1.05 4329/N/G NCM (Network Communications Module)

¶ 1.09 3503/E/EN Discrete Input, 24 V, 32 points

¶ 1.10 Marshalling Connector 2652 -310 DO

¶ 1.12 3604/E/EN Discrete Output, 24 VDC, 16 points

¶ Terminator Panel 2652-1

We also tested the injection phase and did some analysis with the 3008/N Tricon Enhanced Main Processor

v9.10 BUILD 66.

One item needed was the marshalling cables, which are used to connect the terminal panel to the connector

module. This allows communication with field devices through the digital output module.

¶ We wanted to get this communication to work so that we could test variations of TRITON that would

succeed in delivering commands that disrupt the safety process, as described in Section 5.

It turned out to be the only equipment challenge we had ï it seems marshalling cables are very hard to find.

Figure 2 - Marshalling cables were impossible to locate

Since we were unable to locate the cables, the only solution was to manually, using brute force, connect the

terminal panel directly to the connector module. Fortunately, it worked!

7

Figure 3 - Lacking the marshalling cables, these two boards were directly connected.

3.4. Reverse engineering the TriStation suite

The software installed on the engineering workstation is a gold mine for threat actors because it contains all the

information needed to interact with the controller, including how to recognize different statuses and attached

modules. TriStation 1131 v4.9.0 (build 117) is able to connect with the hardware version targeted by the malware,

and all of our analysis has been performed on that version.

The Schneider Development Team has kindly included useful information about their files ï which unfortunately

can also be used by an attacker to better understand the software architecture and its general structure.

8

Starting with a detailed description of every file installed by the software, it is quite simple to understand where

to look for different components.

Figure 4 - The TriStation suite files are nicely identified

9

3.5. Undocumented power users

The TriStation software also stores project files containing key information about the Triconex program,

configuration and behavior inside a password-protected file with .PT2 extension. The assumption is that only

authorized engineers can access the project files containing the proprietary code executed inside the SIS

devices.

However, the TriStation software v4.9.0 (and prior versions), also contain two undocumented power users able

to open any project file regardless of the robustness of its password. These users are likely used by the product

support team to help customers with technical issues. While having operational value, these users can also be

abused by threat actors to access password-protected project documents without the proper credentials.

The two undocumented users are:

T****FD

T****BD

For user T****FD, the login requires a password that is available through reverse engineering and additional

authentication in the form of a support ticket number. This confirms that the role of the user is for customer

support purposes.

Figure 5 ï Undocumented user T****FD requires the extra step of a support ticket number to login

10

User T****BD however, has the capability to access a project file just by inserting the hard-coded credentials

extracted from the TriStation software.

Figure 6 ï Undocumented user T****BD accessing a password protected project file with its static password

Once user T****BD is logged in, a hidden menu is enabled that is not available to other users.

Figure 7 ï A hidden menu is enabled after logging-in as user T****BD

11

From an attackerôs prospective, this scenario could be useful. The hidden menu provides access to a great

number of extra features not available to a normal user.

Moreover, when logged as T****BD, the TriStation software exposes internal information about the

linking/compilation phases of the system logic. This additional data has a high value for threat actors because it

describes in detail the commands involved during program compilation.

Figure 7 ï The difference between the information available to a normal user (left)
and the undocumented power user T****BD (right)

The level of information available to this undocumented power user makes it significantly easier for threat actors

to create malicious OT payloads. However, our research found no connection between the TRITON malware

and this hidden menu, and the malware did not leverage these undocumented users.

It should be noted that these undocumented users exist for TriStation 1131 v4.9.0 and earlier versions only,

according to Schneider Electric.

12

3.6. Understanding the TriStation protocol

In accordance with the file descriptions, the code delegated to manage the network communication is located

inside the DLL ñtr1com.dllò. By analyzing this file, we extracted a wealth of information about the protocolôs

definition that documents its behavior.

Figure 8 - Decompiled code showing low-level packet management

13

3.7. Parsing the Triconex hardware definition

The Low-Density and High-Density chassis used by the Triconex hardware supports several different modules

which are described inside a proprietary file called ñTR1HWDEF.HWDò. The malware does not contain any

information related to the hardware definition, probably because the threat actors did not invest time to reverse

engineer that part.

However, the definition file contains useful information for network traffic analysis that identifies which modules

are attached to the remote Triconex hardware.

We invested time in reverse engineering, and successfully parsed the hardware information. The details are

given in Appendix A ï Triconex Hardware Definition List.

Figure 9 - Automatic parsing of the file that describes Triconex hardware information

We also added this parsing capability to our Wireshark dissector (see section 4.1), which thus provides

information about deployed Triconex hardware modules.

14

3.8. TriStation protocol stack implementation

TriStation is not only the software suite used inside the engineering workstation. There is also a proprietary

network protocol called ñTriStation Protocolò operating on UDP/IP over port 1502.

The malware files related to TriStation implementation are found inside these files:

Filename MD5 Compilation time

TsBase.pyc 288166952f934146be172f6353e9a1f5 2017-08-03 16:52:33

TsHi.pyc 27c69aa39024d21ea109cc9c9d944a04 2017-08-04 08:04:01

TsLow.pyc f6b3a73c8c87506acda430671360ce15 2017-08-03 16:46:51

TS_cnames.pyc e98f4f3505f05bf90e17554fbc97bba9 2017-08-03 12:26:36

All the protocol definitions are contained inside the Python-compiled file ñTS_cnames.pycò and can be easily

decompiled and extracted as shown in the image below. The code contained in the file is a great explanation of

the function codes implemented by the TriStation protocol, showing how deep the threat actors went during

reverse engineering.

Figure 10 - Part of TRITONôs Python code, showing TriStation protocol states

15

Combining the malware analysis with reverse engineering activity performed with the workstation software, we

were able to deeply dissect the TriStation protocol. It allows for communications between engineering

workstations (master) and Triconex controllers (slave), equipped with specific network modules (NCM).

Through our reverse engineering of the Triconex we were able to develop tools for helping industrial

organizations and researchers understand SIS communications (section 3.6), and create and demonstrate a

malicious TRITON payload (section 5).

4. Defending against TRITON: new tools to help

4.1. Wireshark dissector (LUA script) for TriStation protocol

During our analysis, we developed an extended Wireshark dissector using Lua script, called the TriStation

Protocol Plug-in for Wireshark. [2]

It offers several useful features for engineers working with the TriStation protocol:

¶ Indication of the direction of communication

¶ Function codes translated as descriptive text

¶ Extraction of transmitted PLC programs

¶ Identification of connected hardware

¶ Detection of the TRITON malware in network communications

¶ [é]

Figure 11 - The TriStation protocol plug-in for Wireshark detects a sample of TRITON during the injection phase

