
Measuring the speed of the Red Queen’s Race

Richard Harang1 and Felipe N. Ducau2

1 Research Director, Sophos

2 Principal Data Scientist, Sophos

emails: richard.harang@sophos.com, felipe.ducau@sophos.com

Abstract

Security is a constant cat-and-mouse game between those trying to keep abreast of
and detect novel malware, and the malware authors attempting to evade detection. The
introduction of the statistical methods of machine learning into this arms race allows us
to examine an interesting question: how fast is malware being updated in response to
the pressure exerted by security practitioners? The ability of machine learning models
to detect malware is now well known; we introduce a novel technique that uses trained
models to measure “concept drift” in malware samples over time as old campaigns are
retired, new campaigns are introduced, and existing campaigns are modified. Through
the use of both simple distance-based metrics and model confidence measures, we look
at the evolution of the threat landscape over time, and show that – from the perspective
of a machine learning model – the rate of innovation in the malware landscape is low:
the majority of concept drift occurs due to the loss of familiar samples, rather than the
development of novel samples. In addition, from the perspective of a machine learning
model, individual families are remarkably stable, with very little change from month
to month in their feature representation. In combination, these two finding appear to
suggest that techniques for evading machine learning based models do not appear to be
widespread.

Key words: Malware evolution, Concept drift, Fitted Learning, Deep learning

1 Introduction

Malicious content developers are constantly creating new pieces of malware and introducing
changes in their software. Some of these changes are related to variations in the functionality
or the introduction of new capabilities. Others are part of a continuous effort to avoid
detection by the cybersecurity industry. To achieve this goal, there are several techniques

BlackHat USA 2018, August 4-9, 2018, Las Vegas, NV, USA

that malware developers use, from simple ones such as addition of superfluous content to
the files or packing, to advanced polymorphism techniques.

On the other side, anti-malware solutions attempt to identify these new or modified
malware programs with high precision in the least amount of time possible following their
introduction. Traditionally, malware detection has been done by looking for specific at-
tributes of the programs, such as code, binary sequences, file properties, system calls, and
others, which are unique to a malware sample or campaign. This approach is commonly
referred as “signature-based detection”. Usually, these patterns (signatures) to be matched
against files are hand-written by security analysts as soon as they can analyze some novel
piece of malware that is not being detected. These signatures are carefully designed to have
high specificity and a very low false positive rate.

Because of the reactive nature of the signature-based approach, in recent years, sta-
tistical techniques driven by machine learning research have been introduced for the task
of malware detection in an attempt to improve detection coverage for the window between
the introduction of new malware samples and the writing of specialized signatures to detect
them. These machine learning approaches look for “features” – numerical statistics derived
from the files – or various combinations of those features which are indicative of malicious
activity in a data-driven way. Machine learning (ML) based malware classifiers are trained
with several millions malware and benign samples, and try to extract patterns in the data
in a way that generalizes to unseen samples outside their training set.

Even though these ML classifiers have proven to be powerful at spotting malware that
they have never seen while training, the changing nature of the threat landscape causes their
performance to degrade with time, as old campaigns are retired or updated and new ones are
developed. This change in the data distribution of a machine learning model is called concept
drift. In this work, we will study the way in which deep learning based malware classifiers
react to changes in the underlying malware distribution and explore ways to exploit this
information to help us reason about the change in the threat landscape over time. In
particular, we will present a method to estimate the rate at which malware campaigns
are generated and retired, and a method to identify clusters of potentially novel malware
families. For this, we will use a special kind of neural network architecture introduced in
[7] that allows us not only make predictions about the maliciousness of a given file, but also
obtain an estimate for the confidence of those predictions. We also examine the manner in
which changes in malware impact their feature representation as a tool to investigate the
degree to which various campaigns and families change over time from the perspective of
our model.

The remaining of this paper is organized as follows: Section 2 is an overview of existing
techniques and approaches to detect malware with deep learning models. We will also make
a brief introduction to the idea of concept drift along with a survey of proposed methods to
detect it in the case of malware detection as well as suggested mitigation measures; Section

3 introduces the concept of Fitted Learning, an architectural modification to traditional
neural network models developed by Kardan and Stanley [7] that allows us to measure the
confidence of the predictions made by them; In section 4 we will explore how can we use the
change in the confidence of our ML model predictions as an analytic tool to study the rate
of change in the malware distribution over time. With this tool we will look at the change
in the malware landscape on real data collected over the period January 2017 to April 2018
in aggregate. In 4.1 we will focus our analysis in two popular campaigns available in that
data, WannaCry and HWorld ; Section 5 explores how the distance of a given sample to
a fixed reference set can be used as a proxy to understand how different malware families
change over time. Finally we will analyze the relationship between the confidence of a
prediction for a given sample and the distance of this sample to the training and present a
visual method to identify possible novel malware campaigns.

2 Related Work

2.1 Malware detection with neural networks

In recent years, several approaches have been proposed to tackle the problem of detecting
malicious software using neural network techniques with promising results. In this work
we will focus particularly on analysis of Windows Portable Executable (PE) files based on
static features; information that can be extracted from the binary without having to run it.

Even though most of the work in the area uses similar techniques, the main difference
between them relies in the approach used to represent the input files. It is not the goal
of this section to make an exhaustive summary of the work in the field, but mention the
ones that relate closer to ours. Cakir and Dogdu [1] make use of a disassembler to retrieve
the opcodes of the executable files and then a shallow network based on word2vec [8]
to embed them into a continuous vector space. Afterwards, they train a gradient search
algorithm based on Gradient Boosting Machines for the malware classification task. The
drawback of this approach is that the necessary unpacking of the programs to be able to
extract the opcodes is not always a straightforward task. Raff et al. [10], were able to learn a
malware classifier for PE binaries by feeding the raw sequence of the first 300 bytes from the
PE header of the files to feed-forward and recurrent architectures. Raff et al. [9] extended
this approach by developing an architecture that combines feed-forward, convolutional and
recurrent neural networks, to ingest the entire raw sequence of bytes of the files, which can
be several million bytes long. The work of Saxe and Berlin [11] is the closest to ours, both
in terms of the architecture used as well as the feature representation of the files. The
authors used a feed-forward neural network trained to predict if a given PE file is malicious
or benign by looking at aggregated features extracted directly from the binary files as
well as some other meta-data obtained via static analysis. This deterministic aggregation,
applied in a pre-processing step, causes the final representation of a file to be of fixed size

independently of the original size of the binary. Even though there is loss of information
in the feature extraction process, it has shown to work well in practice. Furthermore, this
compact representation of the binaries allows for fast training of the networks.

2.2 Concept drift in malware distribution

In the field of statistical learning, concept drift refers to the change in the relationship be-
tween input features and the target variable for the underlying problem over time. This
phenomena is also known as covariate shift, dataset shift or nonstationarity. This change
in the underlying statistical properties of the task is problematic for machine learning clas-
sifiers, since one of the main assumptions under which they are trained, is that the data
that is going to see in deployment comes from the same data generation process as the one
it was trained on. In other words, these algorithms assume that the data is sampled from
a stationary distribution. Intuitively, the malware data generation process does not fit this
assumption well. On the contrary, we know that malware development is dynamic, and
changes over time by nature to avoid detection.

The most basic approach to deal with a changing data distribution is to retrain the
model as frequently as possible. Kantchelian et al. [6] propose practical considerations when
dealing with a malware landscape which is in constant change, particularly they propose to
train an ensemble of classifiers in which each of them is only tracking one family and then
combine their predictions to produce a single classification. They also propose a framework
for human analysts to work along ML models to overcome the drift in adversarial scenarios.
The work of Deo et al. [3] propose the use of Ven-Abers predictors for assessing the quality
of the classifications to help determine a more efficient retraining strategy than naively
retraining the model continuously. It does so by having a well calibrated model that helps
them determine when the quality of the predictions is decaying.

The Trascend framework, developed by Jordaney et al. [5] was proposed to identify
aging of classification models during deployment before the model’s performance starts to
decay. The proposed technique to assess the quality of the machine learning model is the
conformal evaluator (CE) framework which is inspired on Conformal Predictors (CP) [12].
CE uses p-value calculations together with the output labels provided by the algorithm
under evaluation in order to detect concept drift.

Our work differs from the mentioned ones in the sense that we are not aiming to
overcome the problem of concept drift, but instead, use that information as a proxy to
understand and reason about the change in the malware ecosystem over time.

2.3 Malware evolution

Also relevant to our study, the work by Calleja et al. [2] analyzes the evolution of malware
between the 1980s to 2016 from a software engineering perspective. From the source code of

151 malware samples they computed measures of code size and quality as well as estimations
for their development costs. This analysis is complementary to ours, since their study focuses
on a fixed set of malware samples from different points in time while we look at the amount
of malware and number of campaigns introduced over time.

3 Fitted learning

Vanilla implementations of deep learning classifiers do not have a built-in capability to
determine the confidence of their predictions. If we train a model to distinguish between
pictures of dogs and cats, and then we give it a picture of a whale it will still issue a
prediction (dog or cat), even though the picture (sample) we are showing to the model is
far away from the pictures (samples) that it has seen during training. This is due to the
fact that conventional neural networks have a tendency to overgeneralize outside the range
of their “knowledge”.

Figure 1 exemplifies this phenomena in a visual way. Suppose we train a classifier
to distinguish between the red and blue samples that live in a 2 dimensional space. By
learning the decision boundary shown in the background and predicting everything to the
top and right as being blue and everything to the bottom and left as being red it achieves
an accuracy of 100%. The issue appears when we try to predict samples which come from a
third and different class that the classifier has never seen - black samples in the right-hand
plot. If these samples are introduced after training time, our naive classifier will predict
that all of them are blue with high probability just because they are on the blue side of the
learnt decision boundary.

In order to avoid this kind of behavior, the fitted learning framework [7] learns in
a way that captures the data distribution of the training data and prevents the network
from overgeneralizing outside the train distribution of samples. The main idea behind
this technique is called competitive over-complete output layer (COOL) and it consists of
assigning more than one output to each of the possible classes of a classifier while, at the
same time, forcing those outputs to compete with each other. Forcing this competition in
the output layer of the network produces a partitioning of the input space where the outputs
only agree in the regions of the input space that are close to the training instances. What
this means in practice is that now our classifier is learning to differentiate between classes,
while capturing the distribution of the training instances of each class at the same time.

The authors of [7] define a neuron aggregate as a collection of output units in the
network, called member units, which all attempt to learn the same concept. The practical
way of implementing the competition between member units is to use a softmax layer on top
of all the member units of all the neuron aggregates. Because of the nature of the softmax
function - if one output is larger, all the remaining ones are necessarily smaller - all the
member units of the same neuron aggregate are competing against each other. The number

Figure 1: Example of the over-generalization phenomena. Left: the classifier is trained
to distinguish between blue and red dots and learns the decision boundary shown in the
background. Right: if a new type of samples appear at test time (black dots), they will be
classified as being blue, even though they are far away from the distribution of blue samples.

of member units per class w is the degree of over-completenes (DOO) of the network.

During training of the network, all the member units of the same neuron aggregate
are trained with the same value - 0 if the label is not from the same class as the neuron
aggregate and 1/w otherwise. At inference time all the outputs of the member units of
the same class are combined via multiplication in order to get the final output. If we want
to produce a probability estimate for each of the classes, each aggregate output can be
multiplied by ww. It is worth noting that, with fitted learning, it is no longer the case that
the sum of the outputs, even after re-normalization, add up to one. In this work, we will
define the confidence c of a model for a given sample, as the sum of all the outputs of the
network. This magnitude can be interpreted as the total amount of probability mass that
the model is assigning to any class for the sample. It is easy to see that the maximum
possible value of c is obtained when all the outputs for a given neuron aggregate are 1/w,
resulting in an estimated probability for the given class of one. Both samples that are close
to the decision boundary and those which are far from the training distribution will end up
having low confidence scores.

In Figure 3 we show the result of training the same network, except for the output
layer, on the same problem as before with fitted learning with a DOO of 10. The plot of
the left shows in green the regions in which the classifier’s confidence is high (c ≥ 0.85) and
the right depicts the regions for which the classifier assigns more than 85% of probability
of a sample being of a given class. Note that in the previous case (Figure 1) the classifier
assigned probabilities higher than 95% for the entire 2-dimensional space.

Figure 2: Output layer of a conventional neural network versus COOL. Left: A conventional
output layer with three neurons to learn three concepts. Middle: An over-complete output
layer for the same task during training with DOO of 2. Each inside block is a neuron
aggregate with 2 member units where both are trying to learn to identify the same class.
Right: The same COOL architecture at test phase, the output of all the units within a
neuron aggregate are combined through multiplication to obtain the final predictions.

4 Using confidence to examine changes in
malware distribution

As previous research has shown, machine learning models can learn to predict whether a
given file is malicious or benign, with high accuracy and reasonable false positive rates.
This is true as long as the underlying data distribution does not change. When deployed in
practice, these models start off performing as well as expected, but over time the accuracy
starts to decay and the false positive rate begins to increase. Intuitively this is mostly
caused by the introduction of new malware campaigns, attempts of malware developers to
maintain their software unnoticed, and retiring of old campaigns that were easy for the
cybersecurity industry to detect.

Even though trained models performance diminishes over time, it does it in a gradual
way. In this section we will look at how the confidence of a simple feed-forward network
trained to distinguish between malicious and benign PE files changes over time. The details
on the network architecture, hyperparameters and training procedure are described in the
Appendix A.1

For this experiment we collected 3 million PE binaries per month, from January 2017
to April 2018 observed on a threat intelligence aggregator, resulting in 16 disjoint datasets
D = {DJan17, DFeb17, . . . , DApr18}. The collection mechanism ensures that if a sample is
present in the dataset corresponding to the month m, Dm, then the first time that that

1The code used for the experiments will be uploaded to https://github.com/inv-ds-research/red_

queens_race

Figure 3: Confidence and decision boundaries for a network trained with COOL output
layer. Left: regions of the input space for which the confidence assigned by the classifier is
larger than 0.85. Right: Decision boundaries for p(y|x) > 0.85 for each of the classes.

file was observed in the aggregator happened during that month. The data for each month
contains both benign and malicious PE files in a proportion close to 70/30 respectively.

We proceeded to train one model per month of data. The model architecture is a
5 layers feed-forward network, with COOL and DOO of 16. The same architecture and
hyperparameters were fixed for every training run, resulting in a set of 16 trained models
with entirely different data M = {MJan17,MFeb17, . . .MApr18}. Each of the models is only
aware about kind of malware that was present in the dataset corresponding to that month.
If a malware campaign was first observed in month m, all the models Mi<m have never seen
a sample of that campaign.

Next, for a model trained on data from month m, Mm, we run the samples in each of
the data sets of the subsequent months and compute the confidence that the model assign
to each of them, repeating the process for each model. This is, with the model trained
with January 2017 data we score all the future samples from that model’s perspective (from
February 2017 onward). February 2017 model scores samples from March 2017 to April
2018, etc.

Instead of looking at the confidence scores directly, we define three confidence buckets
of interest: low confidence c ≤ 0.1; medium confidence, 0.1 < c < 0.9 and high confidence
c ≥ 0.9. The low confidence bucket contains samples that are substantially different from
the bulk of training data because they are new to the model, or variants with large statistical
differences from the ones the model was trained on, or samples that are close to the decision
boundary. On the other end, high confidence samples are very similar - from the model
perspective - to existing samples in its training set. They could be near-duplicate files,

Figure 4: Percentage of samples in the a) low and b) high confidence buckets over time.
Linear regression fits, c) for the percentage of samples in the low confidence bucket and d)
for the sample proportion in the high confidence zone

hashbusters, file infectors applied to different files, files with large amounts of “borrowed”
code, etc.

Figures 4a) and 4b) show the percentage of samples in the low and high confidence
buckets respectively for each of the models when evaluated on data from the future. Even
though the curves are noisy, there is a clear increasing trend for the percentage of samples
in the low confidence zone and a decreasing tendency for the number of samples that fall in
the high confidence bucket.

In Figures 4c) and 4d) the same data is shown as a scatter-plot and the best linear fit
is computed for each case. The linear regression coefficients are 0.0034 and -0.0134 for the
percentage of dataset samples in the low confidence and high confidence buckets over time
respectively. The low confidence percentage rises at a rate close to 1% per quarter, which
can be interpreted as the amount of novel malware that is introduced in the population
over time. On the other hand, the percentage of high confidence samples falls at around 4%
per quarter, this trend is guided by families that were well known to the model but being
retired from the overall population.

Jan17 Feb17 Mar17 Apr17 May17 Jun17 Jul17 Aug17
Wannacry 0 0 1 12 542 1156 1461 1365
HWorld 0 207 10622 6294 2773 1861 10175 12583

Sep17 Oct17 Nov17 Dec17 Jan18 Feb18 Mar18 Apr18 Total

Wannacry 1267 908 2735 2153 1517 3090 2444 1721 20372

HWorld 5659 10273 7500 8285 6944 15031 23352 16870 138429

Table 1: Number of samples for WannaCry and HWorld malware in our 3 million datasets
over time.

4.1 Case study: WannaCry and HWorld families

In this section we will focus our analysis in two malware families from 2017: WannaCry
and HWorld2. Particularly we will look at the confidence that each of our models trained
with monthly data assign to all the samples from these two families. In the subset of data
used for this experiment there are a total of 20,372 samples related with the WannaCry
campaign and 138,429 HWorld samples. The monthly counts for each of the families is
shown in Table 1 and the method to determine if a given sample belongs to these families
is defined Appendix B.

As in the previous section, low confidence samples are those samples that are far from
the training distribution of the model or close to the decision boundary between benign and
malicious classes. In figure 5 the results of this experiment are presented. It is important
to note that January and February ’17 models have not seen any instances of WannaCry
during training. The same is true for January ’17 model with respect to the HWorld family.
Nevertheless, we observe in the plots that 55.9% of the WannaCry samples are found to be
high confidence when scored with January model. For those samples the detection rate is
higher than 99.9% which suggests that (1) the machine learning approach generalizes well to
unseen samples, (2) that the WannaCry campaign has features in common with previously
known families, most likely previous Ransomware campaigns, which are well-attested to
in the training data, and (3) our model confidence scores are empirically supported, given
the high detection rate on the high confidence subset. For the HWorld family the case is
different, only 2.75% of the samples from this family are scored by the January ’17 model
as being high-confidence, which implies that the characteristics of the binary files from this
campaign are substantially different than the features present in the January 2017 data.
However if, as above, we classify only those high-confidence samples from future months,
we obtain a true positive rate of 94.3%.

The higher percentage of low confidence WannaCry samples compared with the percent-
age of low confidence samples in the HWorld campaign suggest a higher turnover in variants
of former family. Finally, comparing these plots with the counts in table 1 we see that the

2The HWorld family predates 2017, however we observed no samples of it in our January data.

Figure 5: Percentage of high and low confidence samples for WannaCry (top figure) and
HWorld (bottom figure) families when scored with models trained in different months of
data. Dotted vertical lines indicate the first time a sample for the given family was present
in our training sets.

amount of samples that our model needs to achieve a high percentage of high-confidence
samples is relatively small, the model trained in September 2017 saw during training 6.7%
(1,365) of WannaCry samples and 9% (12,583) of HWorld samples, but was able to score
as high confidence 97.65% and 99.96% of the total samples respectively.

5 Distance and confidence as measure for novelty

In this section we present early work on using distance measures to track development of
individual families over time as well as to potentially detect novel families.

As described in the introduction, the first step of presenting files (including portable
executable files) to an ML model is converting them to a feature representation: a list of

numbers describing various properties of the file. Features can be as simple as simply the
length of the file, require detailed parsing, such as counting the size of individual sections, or
be format agnostic, such as calculating the entropy of a file. These feature representations
can be viewed as points in high-dimensional space, locating a specific file, and distances
can be computed between them, using such metrics as the Euclidean distance d(xi, xk) =
||xi − xk||2.

By tracking the distance between members of the same family over time, we can obtain
a measure of how the families change over time from the perspective of an ML model. For
a given family in a given month, we find the nearest neighbor (in feature space) of the
same family that exists in the January 2017 data set. If a family is exhibiting systematic
change over time, such as the introduction of a range of significantly novel variants with
large differences in the statistics that make up their feature representation, we would expect
their distances to show a marked and consistent increase over time. In figure 6 we examine
the results for the nine most popular non-generic malware families that were present in
all months of our data. With the potential exception of the Ramnit-A worm, no sample
exhibits any significant drift over time. If the 99th percentile is examined, most families show
at most minor fluctuations, peaking around July 2017, however these nearly immediately
revert to baseline in the following month. When viewed through the lens of the feature
representation, malware families show remarkably consistent feature space appearance over
time.

In Section 3 we observed that there are two cases that can lead a sample to be scored
by a model as having low confidence when using the fitted learning framework: (1) when
the sample is far away from the training data distribution and (2) when the sample is close
to the decision boundary between classes in feature space. In order to disentangle this effect
we can look at both the confidence and the distance of the sample to the training set. As
above, we will define this distance di as the Euclidean distance from sample i to its nearest
neighbor in the training set, di = mink,xi 6=xk

(||xi − xk||2).
Figure 7 shows the confidence assigned by January ’17 model in the x-axis and distance

to January ’17 training set in the y-axis for the data in January and July ’17. The contour
lines in the plot indicate the density of the January ’17 data in these regions, with each line
indicating a line of equal probability through the data (estimated via a Kernel Density Es-
timator). Even though the defined distance does not have a straightforward interpretation,
we can use it to compare across plots. As we would expect, most of the samples from the
month in which the model was trained (left plot) lie on the high confidence zone and the
distances tend to be small.

When plotting July data the case is different because of concept drift: the overall
confidence of the model is small and the distances to the training data grow. If we focus
on the samples in the medium and low confidence buckets with higher distances we would
expect to find novel samples. Manual inspection of high density clusters in this region indeed

Figure 6: Family distances from the nearest neighbor of the same family in the January
2017 data set. Lines indicate the median (50th percentile), 95th, and 99th percentile of
distances for a given family in a given month to the nearest member of the same family in
the January 2017 data.

contain samples from malware families that were not present in the training data, as well
as new clusters of existing ‘generic’ detections: Mal/Behav-238 (1,468 samples), Mal/VB-
ZS (7,236 samples), Troj/Inject-CMP (6,426 samples), Mal/Generic-S (318 samples) and
ICLoader PUA (124 samples) 3 along with several clusters of benign samples.

Figure 7: Confidence vs. distance to training set plots for Left January 2017 (data in which
the model was trained) and Right July 2017. High density clusters for malware (in red) and
benign (green) samples highlighted.

6 Conclusions and future work

Machine learning and signature-based methods of detecting malware are complementary in
its nature. On the one hand, signature-based detection produces high confidence results
with very low false positive rates. On the other, neural network models can detect new
types of malware for which no signature could have been written yet.

Integrating the concept of confidence from the fitted learning framework to neural
network models allows us to analyze population and family drift, and measure the rate at
which new malware is introduced and retired from the threat landscape. Furthermore, we
showed that it is possible to correctly classify novel malware samples with high accuracy

3Family names obtained from Sophos AV detection names.

even with an “old” model if we issue predictions for those which the model assigns a high
confidence score.

Finally, we introduced a technique to visualize the threat landscape that allows us to
find clusters of interest for finding potentially novel malware campaigns that can be used
to guide manual inspection of files.

We expect to extend this work in the future by studying the relationship between the
confidence of the samples and the change in accuracy had we had the samples labeled. We
would expect to find that the lowest confidence samples are most informative ones to the
model to reshape its decision boundaries and therefore the ones that we would get the highest
return in accuracy if we labeled them. Another possibly fruitful research direction would
be to use clustering techniques to try to identify automatically novel malware campaigns
on data by confidence and distance to training set information. Finally, we believe it is
important to explore computationally more efficient methods to disentangle the causes of
scoring low confidence observations in the fitted learning framework.

Acknowledgements

Special thanks to Richard Cohen for sharing his expertise on malware genealogy, Joshua
Saxe for his fruitful discussions and the rest of the Data Science team at Sophos.

References

[1] Cakir, Bugra ; Dogdu, Erdogan: Malware Classification Using Deep Learning Meth-
ods. In: Proceedings of the ACMSE 2018 Conference. New York, NY, USA : ACM, 2018
(ACMSE ’18), S. 10:1–10:5. – URL http://doi.acm.org/10.1145/3190645.3190692.
– ISBN 978-1-4503-5696-1

[2] Calleja, Alejandro ; Tapiador, Juan E. ; Caballero, Juan: A Look into 30
Years of Malware Development from a Software Metrics Perspective. In: Research
in Attacks, Intrusions, and Defenses - 19th International Symposium, RAID 2016,
Paris, France, September 19-21, 2016, Proceedings, URL https://doi.org/10.1007/

978-3-319-45719-2_15, 2016, S. 325–345

[3] Deo, Amit ; Dash, Santanu K. ; Suarez-Tangil, Guillermo ; Vovk, Volodya ; Cav-
allaro, Lorenzo: Prescience: Probabilistic Guidance on the Retraining Conundrum
for Malware Detection. In: Proceedings of the 2016 ACM Workshop on Artificial In-
telligence and Security. New York, NY, USA : ACM, 2016 (AISec ’16), S. 71–82. –
URL http://doi.acm.org/10.1145/2996758.2996769. – ISBN 978-1-4503-4573-6

[4] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep Learning. MIT
Press, 2016. – http://www.deeplearningbook.org

[5] Jordaney, Roberto ; Sharad, Kumar ; Dash, Santanu K. ; Wang, Zhi ; Papini,
Davide ; Nouretdinov, Ilia ; Cavallaro, Lorenzo: Transcend: Detecting Con-
cept Drift in Malware Classification Models. In: 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC : USENIX Association, 2017, S. 625–642. –
ISBN 978-1-931971-40-9

[6] Kantchelian, Alex ; Afroz, Sadia ; Huang, Ling ; Islam, Aylin C. ; Miller,
Brad ; Tschantz, Michael C. ; Greenstadt, Rachel ; Joseph, Anthony D. ; Tygar,
J. D.: Approaches to Adversarial Drift. In: Proceedings of the 2013 ACM Workshop
on Artificial Intelligence and Security. New York, NY, USA : ACM, 2013 (AISec
’13), S. 99–110. – URL http://doi.acm.org/10.1145/2517312.2517320. – ISBN
978-1-4503-2488-5

[7] Kardan, N. ; Stanley, K. O.: Fitted Learning: Models with Awareness of their
Limits. In: ArXiv e-prints (2016), September

[8] Mikolov, T. ; Sutskever, I. ; Chen, K. ; Corrado, G. ; Dean, J.: Distributed
Representations of Words and Phrases and their Compositionality. In: ArXiv e-prints
(2013), Oktober

[9] Raff, E. ; Barker, J. ; Sylvester, J. ; Brandon, R. ; Catanzaro, B. ; Nicholas,
C.: Malware Detection by Eating a Whole EXE. In: ArXiv e-prints (2017), Oktober

[10] Raff, E. ; Sylvester, J. ; Nicholas, C.: Learning the PE Header, Malware Detec-
tion with Minimal Domain Knowledge. In: ArXiv e-prints (2017), September

[11] Saxe, J. ; Berlin, K.: Deep neural network based malware detection using two dimen-
sional binary program features. In: 2015 10th International Conference on Malicious
and Unwanted Software (MALWARE), Oct 2015, S. 11–20

[12] Vovk, Vladimir ; Gammerman, Alex ; Shafer, Glenn: Algorithmic Learning in a
Random World. Berlin, Heidelberg : Springer-Verlag, 2005. – ISBN 0387001522

[13] Žliobaitė, Indrė ; Pechenizkiy, Mykola ; Gama, João: An overview of concept drift
applications, 2015

Appendix A Experimental details

A.1 Fitted learning example

For the example presented in section 3 all the samples come from 2-dimensional Gaussian
distributions as follows:

Red ∼ N (µ = [0,−2], σ = [1, 1]) (1)

Blue ∼ N (µ = [5, 4], σ = [1, 1]) (2)

Black ∼ N (µ = [−3, 9], σ = [0.75, 1]) (3)

Both the base and fitted learning models are 2 layer feed-forward neural networks with
a hidden dimension of 200 units and tanh nonlinearities.

A.2 Experimental models

All the models used in this work are feed-forward networks of depth 5 with layer sizes [768,
512, 512, 256], ELU nonlinearities and batch normalization. The output layer and loss
function are the same as described in [7] with DOO=10. The input features of size 1024 are
the same as the ones described in [11]. Networks were trained using Adam optimizer with
a learning rate of 10−3 for 50 epochs.

Appendix B Wannacry and HWorld family identifiers

For determining if a given malware sample belongs to one of the families in the analysis we
use the following detection names from Sophos AV scans:

• Wannacry

– Troj/Ransom-EMG

– Mal/Wanna-A

– Troj/Wanna-C

– Troj/Wanna-D

– HPMal/Wanna-A

– Troj/Wanna-E

– Troj/Wanna-G

– Troj/Dloadr-EDC

– Troj/Agent-AWDS

– Troj/Wanna-H

– Troj/Wanna-I

– Troj/Ransom-EMJ

– Troj/Wanna-J

– Troj/Wanna-

• HWorld

– W32/HWorld-A

