
AFL's Blindspot and How to Resist AFL Fuzzing
for Arbitrary ELF Binaries

 Kang Li
360 Cyber Immunity Lab /

Team Disekt /
University of Georgia

Collaborators: Yue Yin, Guodong Zhu

About Me

Professor of Computer Science at UGA
Founding Mentor of xCTF and Blue-Lotus

Founder of the Disekt, SecDawgs CTF Teams
2016 DARPA Cyber Grand Challenge Finalist

disekt
CTF Team

Cyber
Immunity

• Write a simple buggy program

• Assign the binary (without symbols) and expect students to find bugs

• “Rest” until students finish (usually takes hours …)

Life as a Security Educator

IMG Src: https://cheezburger.com/7950357760/one-great-teacher

Peaceful Class Time

Peace Disrupted

 total paths: 7
uniq crashes: 1

• Fast and Reliable Fuzzing
 edge coverage stored in a compact bitmap (default 64KB)
 low test overhead, simple to use

• Bugs Found in
 Bind, PuTTY, tcpdump, ffmpeg, GnuTLS, libtiff, libpng, …
 more on the AFL sites (http://lcamtuf.coredump.cx/afl/)

• Widely Used
 by most of the 2016 CGC Finalist Teams

Success of AFL

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

• The deafL tool (this talk)

• to force students to study binaries (instead of just running AFL)

• Other reasons:

• to learn AFL’s limitations and to develop better fuzzers

 … …

Why to Resist AFL fuzzing

The Fuzzing Process of AFL

1. Start with sample seed inputs

2. Mutate seed inputs to generate mutants

3. Collect code coverage (CFG edges) Information

4. Save as new seeds if coverage increases

5. Repeat from step 2

AFL Instrumentation

! if with Binary Only (AFL-QEMU)

1. cur_location = (block_address >> 4) ^ (block_address << 8);
2. shared_mem[cur_location ^ prev_location]++;
3. prev_location = cur_location >> 1;

! if with Source Code (Compiler-aid Instrumentation, AFL-GCC)

1. cur_location = <RANDOM#>;
2. shared_mem[cur_location ^ prev_location]++;
3. prev_location = cur_location >> 1;

How Coverage Info is Collected in AFL

Program readelf’s Control Flow Graph (partial)

$ readelf testcase_1

Assuming the basic blocks
being covered are:
…
0x428DB2
0x428E10
0x428DED
…

How Coverage Info is Collected in AFL

AFL’s shared_mem[]

Program readelf’s Control Flow Graph (partial)

$ readelf testcase_1

Assuming the basic blocks
being covered are:
…
0x428DB2
0x428E10
0x428DED
…

How Coverage Info is Collected in AFL

AFL’s shared_mem[]

0x428DB2

0x428E10

hash(0x428DB2,	0x428E10)

0x428DED

Program readelf’s Control Flow Graph (partial)

$ readelf testcase_1

Assuming the basic blocks
being covered are:
…
0x428DB2
0x428E10
0x428DED
…

How Coverage Info is Collected in AFL

AFL’s shared_mem[]

0x428DB2

0x428E10

hash(0x428DB2,	0x428E10)

hash(0x428E10,	0x428DED)

0x428DED

Program readelf’s Control Flow Graph (partial)

$ readelf testcase_1

Assuming the basic blocks
being covered are:
…
0x428DB2
0x428E10
0x428DED
…

How Coverage Info is Collected in AFL

AFL’s shared_mem[]

0x428DB2

0x428E10

hash(0x428DB2,	0x428E10)

hash(0x428E10,	0x428DED)

0x428DED

Program readelf’s Control Flow Graph (partial)

New Coverage Information!

testcase_1 saved in afl/queue

$ readelf testcase_1

Assuming the basic blocks
being covered are:
…
0x428DB2
0x428E10
0x428DED
…

How Coverage Info is Collected in AFL

AFL’s shared_mem[]

$ readelf testcase_N

if shared_mem[] is marked with new
updates — find an input with a “new
interest path”
…

0x428DB2

0x428DED

Program readelf’s Control Flow Graph (partial)

New Coverage Information!

testcase_N saved in afl/queue

hash(0x428DB2,	0x428DBA)

AFL’s Blindspot

0x428DED

AFL’s shared_mem[]

0x428DC8

$ readelf testcase_X

Basic blocs being covered:
…
0x428E70
0x428E28
…

If no new updates in shared_mem[],
AFL considers no new edges.

Program readelf’s Control Flow Graph (partial)

0x428E28

0x428E70

hash(0x428E70,	0x428E28)

Hash conflict occur!

AFL’s Blindspot

0x428DED

AFL’s shared_mem[]

0x428DC8

$ readelf testcase_X

Basic blocs being covered:
…
0x428E70
0x428E28
…

If no new updates in shared_mem[],
AFL considers no new edges.

AFL fails to detect a new path,

testcase_X discarded!

Program readelf’s Control Flow Graph (partial)

0x428E28

0x428E70

hash(0x428E70,	0x428E28)

Hash conflict occur!

Example of AFL’s Blindspot (with readelf)

AFL’s shared_mem[]

hash(0x4189dc,	0x4189e1)	=	0x9bd0

hash(0x4189e1,	0x417b66)	=	0xd79

hash(0x41c9b0,	0x41c9d1)	=	0x9bd0

hash(0x419509,	0x41951c)	=	0xd79	

When we combine symbolic execution with
AFL, we found AFL refuses to sync several
inputs generated by our symbolic execution
engine. Two pairs of conflict edges are
shown below.

readelf’s Control Flow Graph (partial)

What about Using Large Bitmap Sizes?

Bitmap Sizes vs. AFL Speed

— “CollAFL: Path Sensitive Fuzzing”,
published in 2018 IEEE S&P

2. Speed degrades significantly
after bitmap size gets larger
(than CPU mem cache size)

1. Large bitmap sizes reduce but
do not eliminate hash conflicts.

How to Resist AFL Fuzzing

• Add Complex Path Constraints

 e.g. if (input * input = long_int_value)

• Add Delays for Known Invalid Inputs

 e.g. insert sleep() call to slow down AFL execution

• Add Nondeterministic Events

e.g. dynamic code relocation

Usually Need Source Code

How to Resist AFL Fuzzing

• Disturb AFL’s Seed Selection <— (this talk)

Reducing AFL’s ability to finding new paths by
introducing fake edges to cause hash conflicts

Target at the AFL-QEMU mode

Resist through binary rewriting

Without Source Code

• Add Complex Path Constraints

 e.g. if (input * input = long_int_value)

• Add Delays for Known Invalid Inputs

 e.g. insert sleep() call to slow down AFL execution

• Add Nondeterministic Events

e.g. dynamic code relocation

Usually Need Source Code

General Idea of deafL

• Suppress AFL’s ability to mutate seeds and trigger crashes

• The deafL tool — Inject dummy code to a binary to create
conflicting hash values to those edges leading toward crashes

General Idea of deafL

The deafL tool needs to provide answers to these 3 questions

• Which edges to target (to create hash conflicts)?

• How to create an edge that has a specific hash value?

• How to inject fake edges to a binary?

Which Edges to Target (for Hash Conflict)?

• A naïve solution:

• Add fake edges to completely fill AFL’s share_mem[]

• Binaries become too fat and run very slow!

• Need to target only a small set of edges

• Idea: find those edges that lead to the mutation of crash inputs

Which Edges to Target (for Hash Conflict)?

• Current Approach

• Run AFL first to find crashes

• Find those inputs that mutate to crashes (call them targeted seed files)

• Find all edges that link between the initial seed inputs and the targeted
seed files

Find Target Edges (example)

• Start from an AFL crash file
 crashes/id:000000,sig:11,src:000179+000048,op:splice,rep:2

• Find its parents (where it mutates from)
 queue/id:000179,src:000121+000178,op:splice,rep:4,+cov
 queue/id:000048,src:000000,op:havoc,rep:8

Find Target Edges (example)

• Start from an AFL crash file
 crashes/id:000000,sig:11,src:000179+000048,op:splice,rep:2

• Find its parents (where it mutates from)
 queue/id:000179,src:000121+000178,op:splice,rep:4,+cov
 queue/id:000048,src:000000,op:havoc,rep:8

• Find all code edges that covered by these
parent inputs but not by the initial seed

 queue/id:0000:initial_seed_input

[id:000179,src:000121+000178,op:splice,rep:
4,+cov]
introduced [9] new edges:
 [0x43f032, 0x43f06f] at index [0x5687]
 [0x43f06f, 0x43dc22] at index [0x37c1]
 [0x4a418e, 0x4a41c7] at index [0x7610]
 [0x4a41c7, 0x4a41ea] at index [0x7f90]
 [0x4a431f, 0x4a4331] at index [0xc8ab]
 [0x4a4331, 0x4a4386] at index [0x68a1]
 [0x4a7033, 0x4a7039] at index [0xd402]
 [0x4a7039, 0x4a7058] at index [0xb004]
 [0x4a7058, 0x4a7070] at index [0xa885]
 … …

Sample output of finding target edges

 Create Edges with Specific Hash Values

• Use a cmp-jne snippet to fake an edge

• for a given “targeted edge”:
[blk_A_addr, blk_B_addr]

• Assuming we have a starting address to
insert code (known prev_location),
calculating a target address so that

 prev_location ^ cur_location = blk_A_addr ^ blk_B_addr

• Can generate a nested blob of cmp-jne
snippets for a list of “targeted edges”.

				cur_location	=	(block_address	>>	4)	^	(block_address	<<	8);  
				shared_mem[cur_location	^	prev_location]++;	  
				prev_location	=	cur_location	>>	1;

{prev_location’}:		 cmp		%rsp		0x0	

{prev_location’}+4:	 jne		{cur_location’}	

{prev_location’}+11:	 nop	

{prev_location’}+12:	 nop	

……	

{cur_location’}:																						nop

Injecting Edges with Hash Conflicts

• Code Injection Overview

• Build on the python lief package

• Modify entrypoint to points to inserted
code (to fake edges)

• Major changes to code and data
• Update section table to extend .text size
• Update all address/offset/data info after

the inserted section:
○ “.dynamic”, “.rela.dyn”, “.rela.plt”,

“.symtab”, “.dynsym”
○ Pointer references in “.text”, “.data”,

“.rodata”

ELF Header

Program Header Table

Section 1

...

.text
Code for fake edges

...
Section N

Section Header Table

entrypoint
modified

$ python Deafl.py examples/magic/cb

Peace Disrupted

 Total Paths: 7
uniq Crashes: 1

Peace Restored

Previous Result:
 total paths: 7
uniq crashes: 1

Apply deafL to other binaries

CVE 2015-3138

https://nvd.nist.gov/vuln/detail/CVE-2015-3138

$ python Deafl.py examples/tcpdump_cve2015-3138/tcpdump

CVE 2015-3138No crash found after more than 4 days

https://nvd.nist.gov/vuln/detail/CVE-2015-3138

$ python Deafl.py examples/objcopy_cve2018-10534/objcopy

CVE 2018-10534 With a seed that is similar to the CVE crash input

CVE 2018-10534 With a seed that is similar to the CVE crash input

• Injected code can be easily identified

• potentially can be muted by another round of binary rewriting

• Only resist AFL-QEMU

• may not work with other instrumentation schemes (Intel-PT, PIN, DynamoRIO)

• Only reduce AFL’s ability to explore new paths

• does not eliminate AFL’s chance to find specific paths

• no guarantees due to random mutations

Limitations of deafL

• Leverage the Limitation of AFL-QEMU

• AFL-QEMU only tracks edges in an EFL binary’s 1st code segment

• Move code to a new code segment to avoid AFL tracking

• Inserting False Termination Signals

• Abort at normal exit points to generate fake crashes

Other Misc Methods to Resist AFL

• AFL’s high efficiency comes from its compact data structure for edge coverage
(shared_mem[])

• Hash conflict creates a blindspot for AFL — limits its ability to explore paths

• The deafL tool — binary rewriting to resist AFL fuzzing

• Intentionally create hash conflicts for edges that lead to the mutation of crash inputs

Summary

Q&A
kangli.ctf@gmail.com

mailto:kangli.ctf@gmail.com

