
Why so
Spurious?
How a Highly Error-Prone x86/x64 CPU
"Feature" can be Abused to Achieve Local
Privilege Escalation on Many Operating Systems

●
●
●
●
●
●
●
●

●

●

●

●
●
●
●
●

“Traditional” privilege levels

●
●
●

●
●
●
●

●

●

●

●

In Windows, the INT1 handler
was nt!KiDebugTrapOrFault
pre-KPTI. Nowadays, it’s
nt!KiDebugTrapOrFaultShadow

● Processor pushes the previous
state onto interrupt stack: error
code, if appropriate, EIP, CS,
EFLAGS, ESP, and SS

● The OS’ interrupt handler looks
at the CS on the stack to
determine what the previous
privilege level was

● The first 2 bits in the CS value on
the stack describe the previous
mode’s privilege (ring) level

Segmentation
● Vestigial part of the x86 architecture now

that everything leverages paging
● Small role in 64-bit mode (IA-32e/AMD64)
● Just like the IDT, the GDT is setup by the

OS during early kernel initialization via the
LGDT instruction

○ CS = Code Segment
○ DS = Data Segment
○ ES = Extra Segment
○ SS = Stack Segment

● FS/GS are “general” purpose segments
● The value of the segment selector is the

index in the GDT, excluding the first 2 bits
● The first 2 bits describe the RPL (requestor

privilege level) of the segment

Segmentation
● For example, a CS value of 0x10 and 0x13

describe the same index in the GDT,
which is 0x10. The first indicates a
kernelmode (0) RPL. The latter indicates a
usermode (3) RPL

● On x64, the CS, DS, ES, and SS
segments are treated as if each segment
base is 0. FS and GS are exceptions

● OS can set arbitrary base of FS/GS and
use it for data structure retrieval, e.g. base
of FS is set to 0x12345. Reading fs:100h
reads from 0x12445 (0x12345 + 0x100)

● GS holds data structures
relevant to the mode of
execution

● In usermode, this is the _TEB
● In kernelmode, this is the

_KPCR
● If we’re coming from

usermode, we need to
SWAPGS to update the
GSBASE with the kernelmode
equivalent

● Exchanges current GSBASE
register value with value in
MSR address 0xC0000102
(IA32_KERNEL_GS_BASE)

● Allows the kernel to use GS to
read kernel data structures,
e.g. gs:188h reads the
_KPCR.Prcb.CurrentThread

SWAPGS

●

●

D
is

co
ve

ry ● Discovered it while building VM detection mechanisms
● What if a VMEXIT occurs during a “blocking” period?
● CPUID
● Intel hardware has explicit granularity for these cases,

e.g. blocking by MOV SS
● AMD does not, Zen architecture discards pending #DB

exceptions on these VMEXIT cases when blocking by
MOV SS

● Held pending after regular branches...
● Wondered what would happen in the case of a

inter-privilege branch, e.g. INT # and SYSCALL?

●
●
●

So, what happens?

The INT 3 executes in
the context of usermode
code.

This causes a branch to
the INT 3 handler in
kernelmode, which is
KiBreakpointTrap.

Before
KiBreakpointTrap
executes its first
instruction, the pending
#DB is fired (which was
suppressed by MOV SS)
and execution redirects
to KiDebugTrapOrFault.

KiDebugTrapOrFault is
entered with a
kernelmode CS.

https://github.com/nmulasmajic/
CVE-2018-8897

https://github.com/nmulasmajic/
CVE-2018-8897

https://github.com/nmulasmajic/
CVE-2018-8897

https://github.com/nmulasmajic/
CVE-2018-8897

https://docs.google.com/file/d/1HxyhLz6Y0IB7gMtrcEkGLaGVrVHxzYMr/preview

●

●

●

● Writes to GSBASE address at
any privilege level

● When the kernel reads from
GS memory, e.g. to get
kernelmode data structures, it
mistakenly reads from memory
under our control instead

WRGSBASE

● Can fire #DB exception at unexpected location, kernel becomes confused
● Handler thinks we are trusted, since it came from kernel CS
● This means we won’t use SWAPGS
● We control GSBASE
● ????????
● Find instructions to capitalize on this
● ????????

● Profit

Quick recap

Initial weaponizing

● Erroneously assumed there was no encoding for MOV SS, [RAX], only
immediates. e.g. MOV SS, AX

● That doesn’t dereference memory
● But POP SS dereferences stack memory
● Problem though: POP SS only valid in 32-bit compatibility code segment
● On Intel chips, SYSCALL cannot be used in compatibility mode
● So focused on using INT # only, for weaponizing between both architectures.

● …
●

●

●
●

…
●
●

●

●

● CPU0 does the driver loading
● Will attempt to send TLB shootdowns
● This forces CPU0 to wait on the other CPUs, by checking PacketBarrier

variable in its _KPCR
● But CPU1 is in a dead spin... it’s never going to respond
● Luckily, we have info leak to _KPCR for any CPU, accessible from usermode,

so we added this to our list of memory writes
● Next problem, all CPUs, other than BSP, have their #DF stack flow into the

_KPCR without any guard pages. This will corrupt the _KPCR state for that
CPU

● Luckily our _KPCR leak also gives us the TSS pointer for that CPU. We
overwrite the #DF stack handler to point to user memory

Challenges...

●

●
●

● Registered in the IA32_LSTAR
MSR (0xC0000082)

● Not only can we enter
kernelmode with a GSBASE
under our control, but we can
also do so with our usermode
stack

● SYSCALL, unlike INT #, will
not immediately swap to a
kernel stack

● Much easier to exploit than our
attempt using INT 3

SYSCALL functions similar to INT 3

SYSCALL executes in
the context of usermode
code.

This causes a branch to
the SYSCALL handler in
kernelmode, which is
KiSystemCall64.

Before KiSystemCall64
executes its first
instruction, the pending
#DB is fired (which was
suppressed by
MOV/POP SS) and
execution redirects to
KiDebugTrapOrFault.

KiDebugTrapOrFault is
entered with a
kernelmode CS and with
a usermode stack (since
the stack swap doesn’t
complete in
KiSystemCall64).

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://github.com/nmulasmajic/
syscall_exploit_CVE-2018-8897

https://docs.google.com/file/d/1ZBJMxxuJH27oNMFTm9ez9ELNojD3NxZc/preview

Microsoft’s fix
● Followed our suggestions
● KiDebugTrapOrFault uses

an IST stack upon entry
(like the #DF handler).
Can’t abuse SYSCALL
anymore

● GS isn’t accessed until
everything is known to be
good

● Furthermore, sanity checks
against the return address
that was pushed onto the
stack by the CPU is
performed against
KiDebugTraps

Microsoft’s fix
● KiDebugTraps is an array

of function pointers
initialized by the kernel

● Contains
KiBreakpointTrap,
KiSystemCall64, and more
(anything that can cause
entry to kernelmode from
usermode)

Shoutouts to...

● Alex Ionescu (@aionescu)
○ http://www.alex-ionescu.com

● Can Bölük (@_can1357)
○ http://can.ac
○ https://blog.can.ac/2018/05/11/arbitrary-code-executio

n-at-ring-0-using-cve-2018-8897/

http://www.alex-ionescu.com
http://can.ac
https://blog.can.ac/2018/05/11/arbitrary-code-execution-at-ring-0-using-cve-2018-8897/
https://blog.can.ac/2018/05/11/arbitrary-code-execution-at-ring-0-using-cve-2018-8897/

●

○
○

○

○

http://everdox.net/popss.pdf
http://www.youtube.com/watch?v=sV2t3tW_JTQ

