
Cryptanalysis of Curl-P and Other Attacks
on the IOTA Cryptocurrency

Ethan Heilman1, Neha Narula2, Garrett Tanzer3, James Lovejoy2, Michael
Colavita3, Madars Virza2, and Tadge Dryja2

1 Boston University
2 MIT Media Lab

3 Harvard University

Abstract. We present attacks on the cryptography formerly used in
the IOTA blockchain, including under certain conditions the ability to
forge signatures. We developed practical attacks on IOTA’s cryptographic
hash function Curl-P-27, allowing us to quickly generate short colliding
messages. These collisions work even for messages of the same length.
Exploiting these weaknesses in Curl-P-27, we broke the EU-CMA security
of the former IOTA Signature Scheme (ISS). Finally, we show that in a
chosen-message setting we could forge signatures and multi-signatures of
valid spending transactions (called bundles in IOTA).

Keywords: cryptocurrencies, signature forgeries, cryptographic hash
functions, cryptanalysis

1 Introduction

Cryptocurrencies rely on digital signatures to prove a user’s intent to transfer
funds. For performance, in many signatures schemes a user signs the hash of
a payment’s message instead of the message itself. In these schemes, if the
underlying hash function is compromised, it can become possible for an attacker
to forge digital signatures on payments.

This paper presents attacks on the signature scheme used to authorize pay-
ments in a cryptocurrency known as IOTA. These attacks work by exploiting a
cryptographic weakness in IOTA’s hash function, Curl-P-27. Importantly, our
attacks were disclosed and patched in August 2017, and thus no longer impact
the security of IOTA’s signature scheme [20].

IOTA is a cryptocurrency designed for use in the Internet of Things (IoT)
and automotive ecosystems. As of July 24, 2018, it had a market capitalization
of $2.6B US dollars, making it the 9th most valuable cryptocurrency in the
world [9]. Many companies are partnering with IOTA, including automotive
manufacturer Volkswagen and the large European industrial firm Bosch. IOTA
issued an announcement that Volkswagen is planning to release a product using
IOTA in early 2019 [7]. At the end of 2017, Bosch purchased “a significant amount
of IOTA tokens” [6]. In addition, the IOTA Foundation signed an agreement

with the city of Taipei to use IOTA in its smart city initiatives, including its
Digital Citizen Card project [8].

IOTA uses cryptographic signatures to authorize payments by users. The
IOTA Signature Scheme (ISS) is based on Winternitz One-Time Signatures [25],
but unlike traditional Winternitz, in IOTA users sign the hash of a message.
Thus, the security of ISS relies on its cryptographic hash function, which was
Curl-P-27. By applying common differential cryptanalysis methods, we are able
to quickly create messages of the same length which hash to the same value with
Curl-P-27, breaking the function’s collision resistance. We find an upper bound
on the average number of queries to Curl-P-27 to generate a collision.

Using this collision attack, we can generate signature forgeries in IOTA. Our
attacks on the IOTA signature scheme function in a chosen-message setting,
where an attacker creates two payments—a benign payment and a malicious
payment—such that a signature on the benign payment is also a valid signature
on the malicious payment. Our analysis is just on the IOTA signature scheme
and does not include the security of the IOTA network as a whole. These attacks
apply to both normal and multi-signature IOTA payments. Spending from a
multi-signature address requires one user to produce a payment for another user
to sign, which fits exactly in the chosen-message setting of our attack. We detail
how to apply our attack to IOTA payments which spend from multi-signature
addresses, and provide a tool for creating collisions in single-signature and multi-
signature IOTA payments. We also evaluate the resources required to perform
the attack, and show that using 80 cores, we can create colliding IOTA payments
in less than twenty seconds on average.

1.1 Vulnerability Status and Impact

On July 14, 2017, some of the authors began a disclosure process with the
IOTA developers. We negotiated a timeline for them to patch the vulnerability
and a date after which we could publish our results. On August 7, 2017, the
IOTA developers deployed a backwards-incompatible upgrade to mitigate this
vulnerability by removing the use of Curl-P-27 to generate signatures in IOTA,
and replacing it with another hash function [32]. In order to perform the upgrade,
deposits and withdrawals were halted on Bitfinex for approximately three days [4].
All users who held IOTA directly (not via an exchange) were encouraged to
upgrade their wallets and addresses. On September 7, 2017 we published our
vulnerability report describing the nature of our attack [20].

Our vulnerability report included example Curl-P-27 collisions and signature
forgeries on validly formatted IOTA payment messages, as well as software to
validate these examples. In this paper, we expand upon our previous results by
detailing the cryptanalytic techniques we used to break Curl-P-27’s collision
resistance and providing software to generate said signature forgeries. We also
extend these techniques to develop an attack against IOTA’s multi-signature
scheme when Curl-P-27 is used—the multi-signature setting is particularly well-
suited to chosen-message attacks. We did not send any of these forged signatures
to the IOTA network or interfere in the IOTA network in any way. As Curl-P-27

is no longer used for ISS, the signature forgery attacks presented in this paper
do not impact present-day IOTA. This includes our multi-signature attack in
Section 5.2. Curl-P-27 is still used in other parts of IOTA [14]. We do not present
attacks on these uses.

2 Related Work

After the release of our initial report, Colavita and Tanzer [10] independently
reproduced and implemented our cryptanalysis, as well as proved some new
results about Curl-P’s round function—namely, that it is a permutation and that
it diffuses differentials across rounds in accordance with a particular closed-form
expression. They are now collaborating on this paper.

Differential cryptanalysis techniques were first published in 1991 by Biham
and Shamir [3] (researchers at IBM had discovered similar techniques in 1974 but
chose not to disclose them publicly [11]). In this paper, we present a very simple
application of differential cryptanalysis on a balanced ternary cryptographic
hash function. Apart from our initial vulnerability report and [10] we are aware
of no prior research on the differential cryptanalysis of balanced ternary-based
cryptographic hash functions. However, there is work designing and analyzing a
ternary-based cryptographic pseudo-random sequence generator [16].

Exploiting our cryptanalysis of Curl-P-27, we present a chosen-message attack
on ISS’s unforgeability. Although the danger of broken collision resistance—and
the chosen message attack model—may not be immediately apparent, we see a
cautionary tale in work on the MD5 hash function. In 2004, Wang et al. released
the first complete collision for MD5 [35], and soon after published a generic
procedure for generating random collisions [34]. In 2005, Lenstra joined Wang
to apply this cryptographic vulnerability to X.509 certificates, a cornerstone of
the public key infrastructure that enables protocols like HTTPS, and was able
to construct pairs of colliding certificates [24]. Amidst doubts that a certificate
authority would sign such suspicious certificates, or that they would even be
exploitable once issued because they lacked “meaningful” structure, Stevens
joined Lenstra et al. in 2007 to extend the original random collision attack on
MD5 to a chosen-prefix collision attack [30]. This work culminated in 2009, when
Stevens et al. announced that they had managed to forge a X.509 certificate with
certificate authority privileges that passed verification on all major browsers [31],
causing vendors to immediately obsolete MD5.

In October 2017, after the IOTA developers transitioned from using Curl-P-27
to using Kerl—based on Keccak—as the hash function in the IOTA Signature
Scheme, an unrelated vulnerability called the 13 or M attack was discovered [23].
This exploit relies on the fact that in IOTA’s signature scheme—which signs the
message’s hash in chunks with values in [−13, 13]—a signature for the number
13 (also represented as ‘M’) reveals as plaintext a derivative of the private key
that can be used to forge all subsequent chunks. The IOTA Foundation patched
this vulnerability by requiring that if a message hash to be signed includes a
13, then the user must alter the message until no 13s are present in the digest.

As an additional remediation step, the IOTA developers transferred potentially
compromised funds to addresses under its control, providing a process for users
to later apply to the IOTA Foundation in order to reclaim their funds [27].

3 Background

In this section, we provide the necessary preliminaries to understand our attacks.
We start with a short review of some of IOTA’s uncommon design features and
terminology. We also provide an overview of the Curl-P hash function and the
IOTA Signature Scheme (ISS).

3.1 IOTA Design

IOTA currently has several uncommon design features. First, IOTA uses balanced
ternary instead of binary; second, payments in IOTA are known as bundles; third,
IOTA uses a a new data structure called a tangle rather than a traditional chain
of blocks; and fourth, IOTA employs a trusted party called a coordinator to
checkpoint state and approve payments.

IOTA’s data structures use balanced ternary, or base three; instead of bits
∈ {0, 1}, it uses trits ∈ {−1, 0, 1}, and instead of bytes of eight bits, it uses
trytes of three trits. A tryte is represented as an integer ∈ [−13, 13]. IOTA often
serializes trytes as the letters A-Z and the number 9.

A payment in IOTA is represented by a data structure called a bundle.
Bundles are composed of multiple transactions, but IOTA transactions are not
like transactions in other cryptocurrencies; they are buffers which store inputs or
outputs. IOTA transactions include, among others, address, signature, value, and
tag fields. We provide an detailed description of the IOTA bundle and transaction
format when describing our attacks in Section 5.

IOTA is built upon the concept of a tangle [26]. This is similar to a Directed
Acyclic Graph-chain (DAG-chain), where each block can reference more than
one block parent [29]. In IOTA’s case, however, there are no blocks to aggregate
multiple payments. Instead, each transaction must have a nonce proving Proof-
of-Work (PoW) and include pointers to two other transactions. In order to add
transactions to the tangle, a user selects two tip transactions from the tangle to
reference in her transaction. Once created and signed, the user performs sufficient
Proof-of-Work and broadcasts the transaction (or transactions, in the case of a
bundle) to the IOTA network.

In IOTA as it is currently deployed, a bundle must also be approved by the
coordinator to be accepted. The coordinator is a trusted party run by the IOTA
developers that approves and checkpoints the state of the tangle by signing it.
This has led to concerns that IOTA is centralized, or under the control of the
IOTA developers [33]. The IOTA developers argue IOTA is not centralized and
that the coordinator is a temporary measure . The source code for the coordinator
is not publicly available. Since we did not interact with the IOTA network we
cannot confirm how the coordinator would impact our proposed attacks, but

we are not aware of any mechanism in the coordinator that would prevent the
attacks presented in this paper.

3.2 IOTA’s Signature Scheme (ISS)

IOTA uses a signature scheme inspired by the Winternitz One-Time Signatures
(W-OTS) [25]. W-OTS is an optimization of Lamport signatures [22], operating
on multiple bits (in IOTA, trits) at once to trade computational cost for decreased
public key size.

ISS differs in several important aspects from W-OTS. First, ISS operates on
the hashes of messages rather than on the messages directly, as in traditional
W-OTS. Second, rather than use a checksum, ISS performs a technique dubbed
normalization on the hash of the message.

ISS has three security levels. The first security level only signs the first third
of the message hash. The second security level signs the first two thirds of the
message hash. Finally, the third security level signs the entire message hash.
Because our attack works against the highest security level, it also works against
any of the lower security levels. For this reason, when we talk about ISS we will
implicitly assume that security level three is used.

3.3 Curl-P

In this section, we describe the Curl-P hash function. Curl-P (sometimes referred
to as Curl) is a cryptographic hash function designed specifically for use in IOTA .
It has been used for a number of purposes in IOTA, including creating transaction
addresses, creating message digests, Proof-of-Work (PoW), and hash-based sig-
natures. At a high level, Curl-P follows the pattern of a Sponge Construction [2,
18], but it differs in some key areas. As the IOTA project has not provided any
formal specification or analysis of Curl-P, we base our description on the open
source implementation of Curl-P made available by the IOTA developers.

Absorbing Squeezing

0

0

Output

C
ap

ac
it

y
R

at
e

mb0 mb1 mb2

Message

fr fr fr

Fig. 1. The Curl-P construction.

Unlike most cryptographic hash functions, Curl-P operates on trits in balanced
ternary. For clarity, we represent individual trits with lowercase letters such as
a, b, c, x, y, z and sequences of trits as uppercase letters such as S,N,X,Y, unless
we are referring a particular trit within a sequence of trits, where we will use
subscript notation such as Si. Following IOTA’s convention, the R in Curl-P-R
denotes the number of rounds used (e.g., Curl-P-27 denotes 27-round Curl-P).

As shown in Figure 1, Curl-P operates as follows: (1) Curl-P initializes an all
zero state S of length 729 trits. (2) The message is broken into message blocks
mb0 · · ·mbn, each 243 trits. Curl-P employs no message padding; instead, if a
message is not a multiple of 243 in length, the last message block is allowed to be
less than 243 trits.4 (3) In turn, each message block mb0 · · ·mbn is copied into
the first third of the state S and then that state S is transformed by the function
f r. (4) Finally, when no more message blocks remain Curl-P returns the first
third of the final state as the hash output. For a more detailed description, see
Algorithm 1.

Algorithm 1: The sponge-like construction used by Curl-P.
Function CurlHash(msg):

S ← {0}729;
for p← 0; p < |msg|; p← p + 243 do

if p + 243 < |msg| then
mb← msg[p, p + 243];

else
mb← msg[p, |msg| − 1];

S[0, |mb|]← mb;
S ← f r(S);

return S[0, 243];

Now let’s turn our attention to the function f r, which is used to transform the
state S. The transformation function f r is actually just the function f recursively
called on the state S for r rounds, e.g., f 3(S) = f (f (f (S))). Curl-P-27 is the
Curl-P hash function which uses f 27 as its transformation function.

Each round of f r generates a new state from the current state by calling f .
As described in Algorithm 2, each trit in the new state is determined by applying
the simple function g to a pair of trits in the current state. Each trit in the
current state is used twice, once as the first parameter to g (represented by a)
and once as the second parameter (represented by b). In Table 1, we give g as a
substitution box or s-box.

4 In some versions of Curl-P an error is thrown and hashing halted if the message
length is not an even multiple of 243

c = g(a, b)

b = −1 b = 0 b = 1

a = −1 1 1 -1

a = 0 0 -1 1

a = 1 -1 0 0

Table 1. S-box used by Curl-P: takes two trits a, b and returns a trit c.

Algorithm 2: The transform function f (S) called by the Curl Hash Func-
tion.

i ← 0;
for pos← 0; pos < 729; pos← pos + 1 do

j ← i;
if i < 365 then

i ← i + 364;

else
i ← i− 365;

N[pos]← g(Sj , Si);

return N;

4 Cryptanalysis of Curl-P

In this section, we apply common differential cryptanalysis methods to engineer
meaningful full-state collisions in Curl-P-27. Our attack constructs two messages
of the same length which differ at only a single trit position and hash to the same
value under Curl-P-27. Our technique lets us have a large degree of control over
the content of the colliding messages, including arbitrary message prefixes and
suffixes. In the next section, we will exploit this control over Curl-P-27 to forge
signatures on valid IOTA payments.

We were unable to find a formal specification or documentation of Curl-P or
Curl-P-27 beyond the source code published as part of the IOTA open source
project. Furthermore, in our correspondence with the IOTA developers, they
have stated that Curl-P-27 is designed to collide for specific sets of inputs [5]. In
fact, Curl-P-27 is clearly non-random. As explored in detail by [10], Curl-P-27’s
non-random behavior can be observed in messages of the same length; collisions
and second preimages are trivial to generate for messages of different lengths.
Thus, to ensure we have truly broken Curl-P-27 we show that our collision
attack meaningfully breaks a security property of Curl-P-27 on which the IOTA
Signature Scheme (ISS) depends (see Section 5).

At a high level, our attack works as follows. We choose two messages of at
least three message blocks in length which differ at only a single trit. To decrease
the difficulty of our attack, we choose these messages such that they satisfy

certain constraint equations (explained in Section 4.2). Once we arrive at the
message blocks that differ between the two messages we need to ensure that a
collision occurs. To do this, we randomly flip a set of trits in both messages.
This set of altered trits is limited to the differing message block in each of the
two messages. The idea is that after running the transform function f 27 on the
differing message blocks, the only differences are in the first third of the resultant
states.

f 27(S)[243, 729] = f 27(S′)[243, 729]

Because Curl-P replaces the first third of the state with the next message block,
these differences are erased, causing a full state collision. We exploit the differential
properties of Curl-P-27 to brute force a 1-trit difference for many of the rounds of
the transformation function such that it is unlikely these differences will diffuse
beyond the first third of the state by the final round. Finding two messages that
maintain a 1-trit difference across a sufficent number of rounds to generate a
collision is upper bounded by 7.6 million or 222.87 queries to Curl-P-27.

Fig. 2. Probability of a full state collision for a 1-trit difference at each position in a
message block.

In Figure 2, we visualize how differences diffuse over rounds in Curl-P-27.
We color the graph by the probability that a collision occurs given a particular
starting position of a 1-trit difference (x-coordinate) and a lower bound on
the number of rounds that a 1-trit difference is maintained (y-coordinate). To
experimentally generate this dataset we performed 100 samples per position
and round depth (11 ∗ 243 ∗ 100 = 267300 samples in total). Each sample was
initialized to a random state with random difference injected at the anticipated
position and round. For a more mathematical analysis see the recurrence used in
[10].

Our collision attack uses a 1-trit difference at position 17 in the differing mes-
sage blocks. Using the results of this experiment, we can calculate the probability
of a collision if a 1-trit difference starting at position is maintained for certain
number of rounds. For position 17, the probability of a collision is 1.0 for 20
rounds. Thus, if we prevent diffusion of a 1-trit difference starting at position
17 for at least 20 rounds we should find a collision. This attack should work for

some of the other positions in the input message block (as shown in [10]). Note
that this is an upper bound on the amount of work to find a collision, since a
collision could also occur from a 1-trit difference that is maintained for less than
20 rounds.

4.1 Differential Properties of Curl-P Transformation Function f r

In this section, we show how to find states that maintain a 1-trit difference for at
least 20 rounds. This involves analyzing the differential properties of Curl-P’s
transformation function f .

Differential cryptanalysis is concerned with studying the propagation patterns
of differences between two or more sets of inputs. The most common technique
is the discovery of differential trails. A differential trail is a probabilistic bias
of how a set of differences will propagate to another set of differences through
many rounds of a cryptographic function. Here we only work with a specific
differential trail, namely a 1-trit difference between the two states S,S′ under
repeated applications of the transformation function f . We show that Curl-P has a
strong bias toward maintaining a 1-trit difference across rounds (i.e., applications
of f).

Let’s first introduce some necessary terminology. Since Curl-P operates on
trits ∈ {−1, 0, 1} instead of bits ∈ {0, 1}, we must use new notation for ternary
differentials. To represent the difference between between two trits, x and x′

we use 	 (e.g., 0	−1, which means either x = 0 and x′ = −1 or x = −1 and
x′ = 0). By the term diffusion, we indicate that after an application of f the
number of differences between the two states has increased (i.e., the differences
have diffused).

Our attack is built around the fact that the s-box g does not always propagate
differences. For example, consider two sets of inputs and outputs to g : a, b, c
and a′, b′, c′ such that g(a, b) = c and g(a′, b′) = c′. We make the following
observations:

1. For all possible values, if a 6= a′ and b = b′ then it will always be the case
that c 6= c′.

2. If a = a′ and b 6= b′ then both c = c′ and c 6= c′ are possible (e.g., a = a′ = 1,
b = 0 and b′ = −1 then c = c′ = 0).

Each round of f r i.e., each application of tranfs in f r, is called to update the
state. As discussed in Section 3.3, each trit in the updated state depends on the
output of applying g to two trits in the prior state. Each trit in the prior state
can impact at most two trits in the updated state: once as the first variable a to
the s-box g and once as the second variable b. This means that a 1-trit difference
will always propagate to the next round, since when it is the first variable a to
the s-box g, the output of g will differ based on a difference in a (as shown in
part 1 of our observation). Thus if you apply f to two states S,S′ which have
1-trit difference the updated states f (S), f (S′) will either differ by 1 trit or 2 trits.
It will never result in a 0-trit difference.

We model the probability that a 1-trit difference will remain a 1-trit difference
across k rounds of Curl-P. As shown in Figure 3, by enumerating all possible
inputs to g we develop a Markov model of the possible difference states after
an application of f starting from a 1-trit difference. For instance, if the 1-trit
difference in the current round is 0	 1, then with probability 1/9 the difference
stays the same (i.e., 0	 1) in the next round, with probability 2/9 the difference
becomes 0	−1 in the next round, or with 6/9 the number of differences increases
from 1 to 2 (marked as the fail state as it fails to maintain a 1-trit difference).

0⊝1 -1⊝0 -1⊝1

fail

1/9

1/9

2/9 2/9

6/9 9/96/9

Fig. 3. The Markov chain represents the probability of starting from a single difference
of a particular type and ending in a single difference.

As shown below, we convert the Markov model to a state transition matrix.
1/9 2/9 0 6/9
1/9 0 2/9 6/9
0 0 0 1
0 0 0 1


k

The top row represents the state transitions probabilities of 0	 1, the second row
−1	0, third row −1	1, and fourth row that a 1-trit difference diffuses to a 2-trit
difference (the fail state). Using this matrix, we compute a lower bound on the
probability that after k applications of f , the number of differences remains at 1.
This is a lower bound as our analysis does not count transitions which increase
to a difference of 2 trits or more and then later become a 1-trit difference.

Thus, starting from a 1-trit 0	 1 difference we calculate a lower bound on
the probability of a 1-trit difference by raising the matrix to the number of
rounds we wish to investigate. For example, if we raise it to the power 3, the
transition probabilities in the matrix represent the probability that you arrive
at that difference after three rounds. Thus, we can measure the probability we
don’t fail after k rounds.

Earlier, we experimentally verified that if a 1-trit difference is maintained
for 20 rounds of Curl-P-27 (i.e., 20 applications of f), then the probability of
a collision is 1.0. Using our state transition matrix we calculate for 20 rounds,
our attack has a per query success probability lower bounded by 2−42. That is,

we need to make on the order of 242 queries to Curl-P-27 with different message
pairs before finding a pair that will maintain a 1-trit difference for 20 rounds.
This message pair will result in a collision. In the next section, we will show we
can significantly reduce the necessary number of queries to Curl-P-27.

4.2 Solving for a 1-Trit Difference

In this section, we show how to reduce the number queries to Curl-P-27 by
selecting messages with particular properties. We first show how to constrain two
states S and S′, which differ by 1-trit, such that for at least 9 applications of f a
1-trit difference will be maintained (i.e., there is no diffusion of differences). To
do this, we represent f as a system of equations and solve for particular values of
trits in states S and S′.

We can represent the transformation function f r(S) as a series of equations.
For example, a single call to f can be written as

f (S)0 = g(S0,S364), f (S)1 = g(S364,S728), . . . , f (S)728 = g(S365,S0)

where f (S)0 is the trit in position 0 of the updated state after f is applied. Since
each round is just the recursive application of f , we can write the value of a
particular trit after a number of rounds of f in terms of some of the initial values
of the state S. We use superscript to denote the number of rounds of f . For
example, with

f 2(S)6 = g(g(S366,S1), g(S184,S548))

we specify the equation for the trit in position 6 after two rounds of f .
Using this representation, we find the equations guaranteeing that a 1-trit

0	 1 difference is maintained for 9 rounds. We then find a message prefix that
satisfies these equations. Our current process for finding this message prefix takes
less than a second (see Section 5.3 for our performance evaluation). Additionally,
given a particular message template, we only have to change a small set of trits
in two message blocks to transform it into a satisfactory message.

4.3 Finding Collisions

We now combine our two methods to generate collisions for Curl-P-27. We refer
to the technique shown in Section 4.2 of choosing a message prefix such that
a 1-trit difference at a particular position will not diffuse across 9 rounds as
the constraint phase of our attack. We call our method in Section 4.1 of trying
different messages to increase the number of rounds for which a 1-trit difference
is maintained the brute-force phase.

Our collision attack requires at least three message blocks: mba, mbb, and
mbc, where mbb contains the difference. Any number of message blocks can exist
before mba. Any number of message blocks can exist between mba and mbb. mbc
is always the next message after mbb and overwrites the differences in the first
third of the state created by mbb. The actual value of mbc has no impact on the
attack and can be anything.

Our full attack works as follows. First, in the constraint phase of our attack
we find a suitable message prefix by altering trits in parts of mba and mbb,
such that they guarantee a 1-trit difference across 9 rounds of f . Next, in the
brute-force phase we randomly alter trits in particular positions in mbb with the
objective of finding two messages such that a 1-trit difference starting in position
17 is maintained across 20 rounds. As the constraint phase ensures that each
attempt in the brute-force phase also maintains a 1-trit different across 9 rounds,
the attack complexity of the brute-force phase is reduced from 20 rounds to 11
rounds. As a result, the lower bound of the success rate per query is reduced to
approximately 2−22.87 or one out of 7.6 million.

As is typical in differential cryptanalysis, our probability calculations make
the simplifying assumption that actual values of the differing inputs are uniformly
random. Due to the low diffusion rate of Curl-P-27 and the non-random properties
of Curl-P this assumption may not always hold. However, as seen in Section 5.3,
the bounds given in this section are reasonably close to the actual results.

5 Exploiting Collisions in Curl-P to Forge Signatures

In this section, we show how our collision attack against Curl-P-27 can be used
to perform a signature forgery attack against the IOTA Signature Scheme (ISS).
Continuing from the previous section, we show how to create two valid IOTA
bundles (i.e., payments), which differ in at most two trits and have the same
Curl-P-27 hash. Then, we will describe the setting of our attack which exploits
these colliding bundles to forge signatures. Finally, we will show how to perform
this attack against multi-signatures (multisigs) as used by ISS.

5.1 Chosen-Message Attack on ISS

Our attack is a chosen-message attack, which means that a malicious user Eve
tricks a user Alice by asking Alice to sign a bundle, b1, and then later producing
a different bundle, b2, which also verifies under the signature Alice provided. In
more detail:

1. Alice generates a key pair (PK,SK).
2. Eve uses our collision attack on Curl-P-27 to produce two bundles b1, b2 such

that b1 6= b2 and CurlHash(b1) = CurlHash(b2).
3. Eve sends b1 to Alice and asks Alice to sign it. Alice inspects b1 and confirms

that it is benign.
4. Alice sends Eve a signature σ on b1, i.e., Sign(SK, b1)→ σ.
5. Eve produces a signature, bundle pair (σ, b2) such that b1 6= b2, b2 is a valid

bundle, and b2 verifies under Alice’s PK even though Alice has never seen b2.

In Section 4.3, we introduced the general format of our attack, which requires
at least three message blocks mba, mbb, and mbc. To perform the first phase
of the attack, we set certain trits in mba and mbb to particular values. In the

brute-force phase, we change other trits in mbb each attempt and check to see if
we have achieved a collision. However, the bundles must pass the validity checks
in the IOTA software in order for them to be accepted in IOTA as valid bundles,
which limits the trits we can modify to perform our attack.

Signature Fragment (6561)

Address (243)

Value (81) Tag (81) TS (27) Current (27) Last (27)

Bundle Hash (243)

Trunk Transaction Hash (243)

Branch Transaction Hash (243)

Nonce (243)

Fig. 4. IOTA transaction format. Field sizes are in trits. The shaded fields are used to
calculate the bundle hash of the bundle in which the transaction is included.

A bundle’s hash is computed by hashing the concatenation of the address,
value, tag, timestamp, current index, and last index fields of each transaction in
the bundle. The format of a transaction is shown in Figure 4. Most of these fields
are constrained in well-formatted bundles—for example, the values in a bundle
cannot sum to a negative number, the timestamp must be within a certain range,
and the indexes must line up with the transactions in the bundle. Tags do not
impact the semantics or validity of the bundle and can contain arbitrary trits.
Thus, for both the constraint phase and for each attempt in the brute-force phase
of our attack, we only change the trits in the tags.

Another important question is where Eve can place the collision to cause
damage. In our initial vulnerability report, we demonstrated colliding bundles for
two different styles of attack: one which places the collision in the address field
so Alice unwittingly signs a transaction which burns funds that were originally
intended for Eve, allowing Eve to claim Alice made a mistake, and a second
which places two collisions in two different value fields in a bundle so that Alice
unwittingly signs a transaction which pays Eve more than intended. In the
following section, we describe in detail the latter attack style for bundles which
require multiple signatures, which fits our chosen message setting.

5.2 Multi-signature Attack

One criticism of the signature forgery attacks presented in our vulnerability
report [20] is that they are chosen-message attacks, that is, Eve must ask Alice
to sign a bundle. To help demonstrate the importance of chosen-message security,
we now extend our attacks to the IOTA multi-signature (multisig) scheme [28]. In
multisig, funds can be spent only by signatures from multiple parties. To spend,
one party creates a bundle and asks the other party to sign it, which is exactly a

chosen-message attack. The IOTA Foundation encourages exchanges deploying a
hot storage/cold storage solution5 to use multisig for securely storing funds [12].
One of the main reasons multisig is used in a cryptocurrency context is that it
requires that an attacker must compromise more than one party to steal funds.
Our attack removes this security benefit of multisig. We will consider a simple
case of a 2-of-2 multisig where two parties both sign to spend funds; however,
our attack generalizes to more complex settings.

Consider two parties—Eve and Alice—each holding a pair of ISS keys—
(PKE ,SKE) and (PKA,SKA)—and funds which can only be spent by both a
signature from Eve’s secret key and a signature from Alice’s secret key. This
implies that Eve and Alice previously entered into a 2-of-2 multisig and are now
spending those funds jointly. Our attack will work as follows: Eve will compute
two colliding bundles, one which pays funds to Alice and one of which pays funds
to Eve . Eve will sign and send to Alice the bundle that pays Alice. Once she has
Alice’s signature, Eve will use it on the colliding bundle to create a valid bundle
which Alice never saw or authorized, and will broadcast this bundle.6 In this
setting, Eve is either malicious or has been compromised by a malicious party.

Txn MB Message block contents

0
0 Address

1 Value Tag TS Current Last

1
2 Address

3 Value Tag TS Current Last

2
4 Address

5 Value Tag TS Current Last

3
6 Address

7 Value Tag TS Current Last

4
8 Address

9 Value Tag TS Current Last

...

Fig. 5. A bundle portioned into its message blocks. We target two collisions: One in the
17th position of message block 3 by manipulating the trits in the tag portions of message
blocks 1 and 3, and one in the 17th position of message block 7 by manipulating the
tags in 5 and 7. The red arrows indicate the collisions.

In order to construct such bundles, Eve places the collisions in certain value
fields in certain transactions. Figure 5 shows the first four transactions in such a

5 This is cryptocurrency terminology for structuring the control of an account holding
funds such that any transfer of funds requires the consent of two secret keys. One
of the secret keys is “cold,” meaning it is kept in a location not connected to the
internet such as an airgapped device.

6 Note that if Alice is a cold wallet, she relies on Eve to broadcast the transaction.

bundle divided into message blocks. The highlighted fields are the trits relevant
to our attack. Eve causes a collision in trit 17 of the value field in the second
transaction (message block 3) by manipulating the trits in the tag fields both
before and after the collision. By doing this, Eve can produce two bundles with
different values in the second transaction that have the same bundle hash. Eve
creates a second collision later on in the bundle in the fourth transaction (message
block 7), this time arranging the collision so that the values still sum to zero in
both colliding bundles. This serves to change what amounts are paid to whom in
the transaction.

Generating these collisions essentially requires running the attack twice,
sequentially. In our current collision tool, we require one transaction between the
two transactions where we collide in the value fields. Other than this requirement,
and the requirement that the collisions are not in the first or last transactions,
we can handle bundles with different numbers of transactions. That our tool can
only cause collisions in the 17th trit of a message block is a limitation of the
tool’s current implementation, not of the cryptanalysis techniques described in
Section 4. Our tool does not depend on the specific addresses and values in the
transactions to generate collisions, but the collision trits in the values that are
changed must be different in order to produce valid bundles. For example, if trit
17 is zero in both Alice and Eve’s output values in b1, then flipping trit 17 in
Eve’s output to one in b2 will cause the values in b2 to not sum to zero. In b1
Alice’s output value’s trit 17 should be one and Eve’s should be zero.

In Appendix B we show the contents of two example bundles we created using
this technique. In this example, the bundles are spending a multisig input of
500, 000, 000 IOTA controlled by Alice and Eve. Alice signs a bundle which pays
Eve 1 IOTA and the remainder to other addresses. In the colliding bundle, Eve
receives 129, 140, 164 IOTA, at the expense of Alice’s address.

Generating colliding single-signature bundles operates in much the same way;
our vulnerability report demonstrated a signature forgery on a bundle which
paid out to three addresses. In the benign bundle b1 Alice receives 50, 000 and
810, 021, 667 IOTA to two addresses she controls and pays 100 IOTA to Eve. In
the malicious bundle b2 Eve changes this so that she receives 129, 140, 263 instead
of 100, at the expense of Alice’s funds. We have not investigated the effects of
placing collisions in fields besides the value and address. Other attacks might be
possible.

5.3 Performance Analysis

We ran these attacks on a 80-core Intel machine with 8 2.4GHz 10-core Intel
chips and 256 GB of RAM, running 64-bit Linux 4.9.74. Our attacks use all
of the CPU but a negligible amount of the RAM. As described in Section 4.3,
finding a collision consists of two phases: the constraint phase calculates the set
of constraints, and the brute-force phase generates randomness in the tags to
find collisions.

The constraint phase generates and solves eighteen equations, two for each
of the first nine rounds of Curl-P-27. The constraint phase is implemented in

Part Average Min Max

Constraint phase 1.1 s 0.27 s 6.1 s

Brute-force phase 7.2 s 0.04 s 74 s

Multisig 15.2 s 1.4 s 74 s
Table 2. Run time of the constraint phase, brute-force phase, and the entire multisig
attack which involves running each phase twice. Measurements over 5000 iterations.

Python, and runs on a single core. We did not try to optimize the first phase.
Table 2 shows the average, minimum, and maximum times of running the first
phase 5000 times, when colliding on the 17th trit.

Table 2 also shows measurements for the brute-force phase, which uses the
trits and template generated from the first phase to brute-force one collision.
This is implemented in Go and parallelizes well, so we use all 80 cores of our
server. On average it only takes 7.2 seconds to find one collision using the output
of the first phase. On average, it takes 5.2M attempts to find one collision, with
the minimum and maximum attempts over 5000 runs 1279 and 53M, respectively.
This corroborates our analysis in Section 4.3.

In order to perform the multisig attack described in Section 5.2, we must
run both the constraint phase and the brute-force phase twice, sequentially, to
find two collisions. Using our collision tool, it takes on average 15.2 seconds
to produce two multisig bundles which differ in two places. Table 2 shows the
average, minimum, and maximum times for 5000 runs with the same starting
bundle.

6 Discussion

The IOTA developers have made several statements discussing the impact and
the cause of these vulnerabilities. We summarize these statements and address
some of the concerns.

The IOTA developers have argued that our attack model is irrelevant in the
context of the complete IOTA network: specifically, that the chosen-message
setting is implausible because “in IOTA an attacker doesn’t choose the signed
message” [5]. In response to the critique on the choosen-message setting we
extended our attacks to work on payments spending from a multisig address
since the multisig protocol explicitly allows one user to choose the message that
another user will sign.

The IOTA developers also argued that “even most valid attacks” would fail
on the live IOTA network because of unspecified “protection mechanisms” in
the closed-source coordinator [5, 13]. The attacks presented in the vulnerability
report and this paper are against the IOTA Signature Scheme in isolation. We
did not analyze these attacks within the context of the complete IOTA system.

Additionally, IOTA developers claimed that the ability to find colliding inputs
to Curl-P-27 was intentional and was for the purposes of preventing “scam clones.”

It is worth quoting them in full: “The IOTA team made a design decision early on
to prevent this possibility [of scam clones] by purposefully introducing the Curl-P
hashing function with known practical collisions. This had the express purpose of
rendering fraudulent clones of the protocol useless in their application as a DLT
protocol, while at the same time guaranteeing the security of the IOTA protocol
and network as a whole.” They argue that the closed-source IOTA coordinator
would protect the IOTA network from these purposefully introduced flaws, which
they refer to as a “copy-protection mechanism” [13]. Our research, in addition to
discovering a novel attack on the IOTA Signature Scheme, may have uncovered
an intentionally-placed backdoor in the cryptography of IOTA.

7 Conclusion

This paper presents chosen-message signature forgery attacks on the IOTA
Signature Scheme when using the hash function Curl-P-27. We explain the
cryptanalysis methods we used to create full-state collisions on same-length
messages which differ in only a single position. We describe how to use these
methods to create two valid IOTA bundles which can differ in multiple positions
but still hash to the same value, and thus a signature for one is a valid signature
for the other. We give examples placing these differences in the value fields of
a bundle, and show that an attacker can produce such bundles using easily-
accessible hardware in tens of seconds.

8 Acknowledgements

The authors would like to thank Andy Sellars, Weijia Gu, Rachael Walker, Joi Ito,
Vincenzo Iozzo, Sharon Goldberg, and Ward Heilman for feedback and guidance.

References

[1] Mihir Bellare and Phillip Rogaway. “The exact security of digital signatures-
How to sign with RSA and Rabin”. In: International Conference on the The-
ory and Applications of Cryptographic Techniques. Springer. 1996, pp. 399–
416.

[2] Guido Bertoni et al. “On the indifferentiability of the sponge construction”.
In: Lecture Notes in Computer Science 4965 (2008), pp. 181–197.

[3] Eli Biham and Adi Shamir. “Differential cryptanalysis of DES-like cryp-
tosystems”. In: Journal of CRYPTOLOGY 4.1 (1991), pp. 3–72.

[4] Bitfinex. IOTA Protocol Upgrade August 08, 2017. https://www.bitfinex.
com/posts/215, archived at https://web.archive.org/web/20180722235151/
https://www.bitfinex.com/posts/215.

https://www.bitfinex.com/posts/215
https://www.bitfinex.com/posts/215
https://web.archive.org/web/20180722235151/https://www.bitfinex.com/posts/215
https://web.archive.org/web/20180722235151/https://www.bitfinex.com/posts/215

[5] Tangle blog. Full Emails of Ethan Heilman and the Digital Currency
Initiative with the IOTA Team Leaked. http://www.tangleblog.com/wp-
content/uploads/2018/02/letters.pdf, archived at https://web.

archive.org/web/20180228182122/http://www.tangleblog.com/wp-

content/uploads/2018/02/letters.pdf, https://archive.is/6imWR.
[6] Bosch. Press release: Robert Bosch Venture Capital makes first invest-

ment in distributed ledger technology. https : / / www . bosch - presse .

de / pressportal / de / en / robert - bosch - venture - capital - makes -

first - investment - in - distributed - ledger - technology - 137411 .

html, archived at https://web.archive.org/web/20180724022550/

https://www.bosch-presse.de/pressportal/de/en/robert-bosch-

venture-capital-makes-first-investment-in-distributed-ledger-

technology-137411.html.
[7] Crypt Briefing. First VW IOTA Product Will Be Released Early Next

Year. https://cryptobriefing.com/vw- iota- product- released/,
archived at https://web.archive.org/web/20180724021409/https:

//cryptobriefing.com/vw-iota-product-released/.
[8] Coindesk. City of Taipei Confirms It’s Testing IOTA Tech for ID. https:

//www.coindesk.com/city-of-taipei-confirms-its-testing-iota-

blockchain-for-id/.
[9] CoinmarketCap. CoinmarketCap IOTA July 23 2018. https://coinmarketcap.

com/currencies/iota/, archived at https://web.archive.org/web/

20180724020019/https://coinmarketcap.com/currencies/iota/.
[10] Michael Colavita and Garrett Tanzer. “A Cryptanalysis of IOTA’s Curl

Hash Function”. In: (2018).
[11] Don Coppersmith. “The Data Encryption Standard (DES) and its strength

against attacks”. In: IBM journal of research and development 38.3 (1994),
pp. 243–250.

[12] IOTA Foundation. IOTA Guide – Generating Secure Multisig Addresses
(hot and coldwallet). https://domschiener.gitbooks.io/iota-guide/
content/exchange-guidelines/generating-multisignature-addresses.

html, archived at https://archive.is/087kP.
[13] IOTA Foundation. Official IOTA Foundation Response to the Digital

Currency Initiative at the MIT Media LabPart 4 / 4. https://blog.

iota.org/official-iota-foundation-response-to-the-digital-

currency-initiative-at-the-mit-media-lab-part-4-11fdccc9eb6d,
archived at http://web.archive.org/web/20180727155405/https:

//blog.iota.org/official- iota- foundation- response- to- the-

digital- currency- initiative- at- the- mit- media- lab- part- 4-

11fdccc9eb6d?gi=4be3ca82ed48.
[14] IOTAledger (github). IOTA Kerl specification. https://github.com/

iotaledger/kerl/blob/master/IOTA-Kerl-spec.md, archived at https:
//web.archive.org/web/20180617175320/https://github.com/

iotaledger/kerl/blob/master/IOTA-Kerl-spec.md. 2017.

http://www.tangleblog.com/wp-content/uploads/2018/02/letters.pdf
http://www.tangleblog.com/wp-content/uploads/2018/02/letters.pdf
https://web.archive.org/web/20180228182122/http://www.tangleblog.com/wp-content/uploads/2018/02/letters.pdf
https://web.archive.org/web/20180228182122/http://www.tangleblog.com/wp-content/uploads/2018/02/letters.pdf
https://web.archive.org/web/20180228182122/http://www.tangleblog.com/wp-content/uploads/2018/02/letters.pdf
https://archive.is/6imWR
https://www.bosch-presse.de/pressportal/de/en/robert-bosch-venture-capital-makes-first-investment-in-distributed-ledger-technology-137411.html
https://www.bosch-presse.de/pressportal/de/en/robert-bosch-venture-capital-makes-first-investment-in-distributed-ledger-technology-137411.html
https://www.bosch-presse.de/pressportal/de/en/robert-bosch-venture-capital-makes-first-investment-in-distributed-ledger-technology-137411.html
https://www.bosch-presse.de/pressportal/de/en/robert-bosch-venture-capital-makes-first-investment-in-distributed-ledger-technology-137411.html
https://web.archive.org/web/20180724022550/https://www.bosch-presse.de/pressportal/de/en/robert-bosch-venture-capital-makes-first-investment-in-distributed-ledger-technology-137411.html
https://web.archive.org/web/20180724022550/https://www.bosch-presse.de/pressportal/de/en/robert-bosch-venture-capital-makes-first-investment-in-distributed-ledger-technology-137411.html
https://web.archive.org/web/20180724022550/https://www.bosch-presse.de/pressportal/de/en/robert-bosch-venture-capital-makes-first-investment-in-distributed-ledger-technology-137411.html
https://web.archive.org/web/20180724022550/https://www.bosch-presse.de/pressportal/de/en/robert-bosch-venture-capital-makes-first-investment-in-distributed-ledger-technology-137411.html
https://cryptobriefing.com/vw-iota-product-released/
https://web.archive.org/web/20180724021409/https://cryptobriefing.com/vw-iota-product-released/
https://web.archive.org/web/20180724021409/https://cryptobriefing.com/vw-iota-product-released/
https://www.coindesk.com/city-of-taipei-confirms-its-testing-iota-blockchain-for-id/
https://www.coindesk.com/city-of-taipei-confirms-its-testing-iota-blockchain-for-id/
https://www.coindesk.com/city-of-taipei-confirms-its-testing-iota-blockchain-for-id/
https://coinmarketcap.com/currencies/iota/
https://coinmarketcap.com/currencies/iota/
https://web.archive.org/web/20180724020019/https://coinmarketcap.com/currencies/iota/
https://web.archive.org/web/20180724020019/https://coinmarketcap.com/currencies/iota/
https://domschiener.gitbooks.io/iota-guide/content/exchange-guidelines/generating-multisignature-addresses.html
https://domschiener.gitbooks.io/iota-guide/content/exchange-guidelines/generating-multisignature-addresses.html
https://domschiener.gitbooks.io/iota-guide/content/exchange-guidelines/generating-multisignature-addresses.html
https://archive.is/087kP
https://blog.iota.org/official-iota-foundation-response-to-the-digital-currency-initiative-at-the-mit-media-lab-part-4-11fdccc9eb6d
https://blog.iota.org/official-iota-foundation-response-to-the-digital-currency-initiative-at-the-mit-media-lab-part-4-11fdccc9eb6d
https://blog.iota.org/official-iota-foundation-response-to-the-digital-currency-initiative-at-the-mit-media-lab-part-4-11fdccc9eb6d
http://web.archive.org/web/20180727155405/https://blog.iota.org/official-iota-foundation-response-to-the-digital-currency-initiative-at-the-mit-media-lab-part-4-11fdccc9eb6d?gi=4be3ca82ed48
http://web.archive.org/web/20180727155405/https://blog.iota.org/official-iota-foundation-response-to-the-digital-currency-initiative-at-the-mit-media-lab-part-4-11fdccc9eb6d?gi=4be3ca82ed48
http://web.archive.org/web/20180727155405/https://blog.iota.org/official-iota-foundation-response-to-the-digital-currency-initiative-at-the-mit-media-lab-part-4-11fdccc9eb6d?gi=4be3ca82ed48
http://web.archive.org/web/20180727155405/https://blog.iota.org/official-iota-foundation-response-to-the-digital-currency-initiative-at-the-mit-media-lab-part-4-11fdccc9eb6d?gi=4be3ca82ed48
https://github.com/iotaledger/kerl/blob/master/IOTA-Kerl-spec.md
https://github.com/iotaledger/kerl/blob/master/IOTA-Kerl-spec.md
https://web.archive.org/web/20180617175320/https://github.com/iotaledger/kerl/blob/master/IOTA-Kerl-spec.md
https://web.archive.org/web/20180617175320/https://github.com/iotaledger/kerl/blob/master/IOTA-Kerl-spec.md
https://web.archive.org/web/20180617175320/https://github.com/iotaledger/kerl/blob/master/IOTA-Kerl-spec.md

[15] Oded Goldreich. Foundations of Cryptography: Basic Applications. Vol. 2.
New York, NY, USA: Cambridge University Press, 2004.

[16] Guang Gong and Shaoquan Jiang. “The editing generator and its crypt-
analysis”. In: International Journal of Wireless and Mobile Computing 1.1
(2005), pp. 46–52.

[17] Leon Groot Bruinderink and Andreas Hülsing. ““Oops, I Did It Again” –
Security of One-Time Signatures Under Two-Message Attacks”. In: Selected
Areas in Cryptography – SAC 2017. 2018, pp. 299–322.

[18] Bertoni Guido et al. Cryptographic sponge functions. 2011.
[19] Paul Handy. Merged Kerl Implementation. https://github.com/iotaledger/

iri/commit/539e413352a77b1db2042f46887e41d558f575e5, archived at
https://archive.is/jCisX.

[20] Ethan Heilman et al. IOTA Vulnerability Report: Cryptanalysis of the Curl
Hash Function Enabling Practical Signature Forgery Attacks on the IOTA
Cryptocurrency.

[21] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
Second Edition. CRC Press, 2014.

[22] Leslie Lamport. Constructing digital signatures from a one-way function.
Tech. rep. Technical Report CSL-98, SRI International Palo Alto, 1979.

[23] Willem Pinckaers (Lekkertech). IOTA Signatures, Private Keys and Ad-
dress Reuse? http://blog.lekkertech.net/blog/2018/03/07/iota-

signatures/, archived at https://archive.is/CnydQ. 2018.
[24] Arjen K. Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding X.509

Certificates. Cryptology ePrint Archive, Report 2005/067. https://eprint.
iacr.org/2005/067. 2005.

[25] Ralph C Merkle. “A certified digital signature”. In: Conference on the
Theory and Application of Cryptology. Springer. 1989, pp. 218–238.

[26] Serguei Popov. “The tangle”. In: cit. on (2016), p. 131.
[27] Ralf Rottmann. IOTA Reclaim Identification Verification Process. https:

//blog.iota.org/iota- reclaim- identification- verification-

process-e316647e06e6, archived at https://web.archive.org/web/

20180710000243/https://blog.iota.org/iota-reclaim-identification-

verification-process-e316647e06e6?gi=b8190e111e7f.
[28] Dominik Schiener. IOTA Multi-Signature Scheme. https://github.com/

iotaledger/wiki/blob/master/multisigs.mdIOTA Multi-Signature
Scheme. 2017 (accessed February 3, 2018).

[29] Yonatan Sompolinsky and Aviv Zohar. “Secure high-rate transaction pro-
cessing in bitcoin”. In: International Conference on Financial Cryptography
and Data Security. Springer. 2015, pp. 507–527.

[30] Marc Stevens, Arjen Lenstra, and Benne de Weger. “Chosen-Prefix Colli-
sions for MD5 and Colliding X. 509 Certificates for Different Identities”. In:
Advances in Cryptology – EUROCRYPT 2007. Springer. 2007, pp. 1–22.

[31] Marc Stevens et al. “Short Chosen-Prefix Collisions for MD5 and the
Creation of a Rogue CA Certificate”. In: Advances in Cryptology – CRYPTO
2009. Springer, 2009, pp. 55–69.

https://github.com/iotaledger/iri/commit/539e413352a77b1db2042f46887e41d558f575e5
https://github.com/iotaledger/iri/commit/539e413352a77b1db2042f46887e41d558f575e5
https://archive.is/jCisX
http://blog.lekkertech.net/blog/2018/03/07/iota-signatures/
http://blog.lekkertech.net/blog/2018/03/07/iota-signatures/
https://archive.is/CnydQ
https://eprint.iacr.org/2005/067
https://eprint.iacr.org/2005/067
https://blog.iota.org/iota-reclaim-identification-verification-process-e316647e06e6
https://blog.iota.org/iota-reclaim-identification-verification-process-e316647e06e6
https://blog.iota.org/iota-reclaim-identification-verification-process-e316647e06e6
https://web.archive.org/web/20180710000243/https://blog.iota.org/iota-reclaim-identification-verification-process-e316647e06e6?gi=b8190e111e7f
https://web.archive.org/web/20180710000243/https://blog.iota.org/iota-reclaim-identification-verification-process-e316647e06e6?gi=b8190e111e7f
https://web.archive.org/web/20180710000243/https://blog.iota.org/iota-reclaim-identification-verification-process-e316647e06e6?gi=b8190e111e7f
https://github.com/iotaledger/wiki/blob/master/multisigs.md
https://github.com/iotaledger/wiki/blob/master/multisigs.md

[32] David Snsteb. Upgrades & Updates. https://blog.iota.org/upgrades-
updates-d12145e381eb, archived at https://web.archive.org/web/

20180722232608/https://blog.iota.org/upgrades-updates-d12145e381eb?

gi=51123f82db22.
[33] Eric Wall. IOTA is centralized. https://medium.com/@ercwl/iota-

is- centralized- 6289246e7b4d, archived at https://web.archive.

org/web/20180616231657/https://medium.com/@ercwl/iota- is-

centralized-6289246e7b4d. 2017.
[34] Xiaoyun Wang and Hongbo Yu. “How to Break MD5 and Other Hash

Functions”. In: Advances in Cryptology – EUROCRYPT 2005. Springer.
2005, pp. 19–35.

[35] Xiaoyun Wang et al. Collisions for Hash Functions MD4, MD5, HAVAL-
128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199. https:
//eprint.iacr.org/2004/199. 2004.

A Security Definitions

In this Section we provide a formal definition of the EU-CMA (Existential
Unforgeability under Chosen Message Attack) and EU-RMA (Existential Un-
forgeability under Random Message Attack) for ISS (IOTA Signature Scheme).
We use EU-RMA to model known message attacks where the known message
is chosen at random. We discuss extending these definitions to include chosen
message attacks which are limited to messages which are also valid IOTA bundles.

We briefly recall the standard definitions of digital signature schemes and
their security, mirroring standard literature [15, 17, 21].

Definition 1. A digital signature scheme is a triple of algorithms (KeyGen,Sign,
Verify) working as follows:

– KeyGen(1λ)→ (PK,SK): On input 1λ, the key generator KeyGen outputs a
keypair (PK,SK), consisting of a public key PK and secret key SK.

– Sign(SK,msg) → σ: On input SK and message msg, the signing algorithm
Sign outputs a signature σ.

– Verify(PK,msg, σ) → b: On input PK, msg, σ, the verification algorithm
Verify outputs a decision bit b.

We require perfect completeness. That is, for any message msg, a validly
generated signature must always be accepted:

Pr

[
Verify(PK,msg, σ) = 1

∣∣∣∣ (PK,SK)← KeyGen(1λ)
σ ← Sign(SK,msg)

]
= 1 .

The setting relevant for our work in Section 5 is a chosen message attack where,
before outputting a forgery, an adversary gets to learn signatures for messages of
his choice. In particular, for one-time signature schemes, the adversary is able
to learn a signature for a single message. Other attack models include random
message attacks (adversary is able to learn signatures on random message(s))

https://blog.iota.org/upgrades-updates-d12145e381eb
https://blog.iota.org/upgrades-updates-d12145e381eb
https://web.archive.org/web/20180722232608/https://blog.iota.org/upgrades-updates-d12145e381eb?gi=51123f82db22
https://web.archive.org/web/20180722232608/https://blog.iota.org/upgrades-updates-d12145e381eb?gi=51123f82db22
https://web.archive.org/web/20180722232608/https://blog.iota.org/upgrades-updates-d12145e381eb?gi=51123f82db22
https://medium.com/@ercwl/iota-is-centralized-6289246e7b4d
https://medium.com/@ercwl/iota-is-centralized-6289246e7b4d
https://web.archive.org/web/20180616231657/https://medium.com/@ercwl/iota-is-centralized-6289246e7b4d
https://web.archive.org/web/20180616231657/https://medium.com/@ercwl/iota-is-centralized-6289246e7b4d
https://web.archive.org/web/20180616231657/https://medium.com/@ercwl/iota-is-centralized-6289246e7b4d
https://eprint.iacr.org/2004/199
https://eprint.iacr.org/2004/199

which we define to model a known message attack. Key-only attacks (adversary
is only able to learn the public key). In particular, prior work offered a key-
only attack of IOTA [23] succeeding with probability 1 for ≈ 3% public keys.
Our chosen message attack exploiting vulnerabilities in Curl-P-27 succeeds with
probability 1 (under reasonable heuristics) for all public keys.

Definition 2. A one-time signature scheme (KeyGen,Sign,Verify) is secure against
chosen message attacks (or, EU-CMA secure), if no polynomial-time stateful
adversary A = (A1,A2) can output a fresh forgery, except with negligible proba-
bility:

Pr

 (msg 6= msg′)
and

Verify(PK,msg′, σ′) = 1

∣∣∣∣∣∣∣∣
(PK,SK)← KeyGen(1λ)

(msg, st)← A1(PK)
σ ← Sign(SK,msg)

(msg′, σ′)← A2(st,msg, σ)

 ≈ negl(λ) .

Notably, ISS uses a hash-then-sign paradigm. Therefore, ability to find colli-
sions for the underlying hash function directly yields to a chosen-message attack.
Given two colliding inputs x1 and x2 (H(x1) = H(x2)), the adversary will first
output msg = x1, and after receiving a correct signature σ = Sign(SK,msg) from
the challenger, will output msg′ = x2 and σ′ = σ. Because both messages yield
the same value when hashed, Verify(PK,msg′, σ′) always accepts.

One could argue that the practical impact of not achieving EU-CMA security
is hard to quantify. Indeed, if other parts of the overall system required messages
to have certain structure, yet an attacker was only able to produce forgeries for
messages that lack this requisite structure, these cryptographic breaks might not
yield attacks exploitable against valid messages.

We rule out this possibility by devising a highly flexible collision-finding algo-
rithm (see Section 5). In particular, our algorithm lets us freely generate collisions
with arbitrary known prefixes and suffixes. This is sufficient, for example, to gen-
erate two colliding IOTA transactions, or two colliding multi-signature bundles.
We explain how to generate such forgeries in Appendix B, and experimentally
validate that the IOTA reference implementation from August 6, 2017, which
is before the commit to change the hash function from Curl-P to Keccak [19],
accepts the forged signatures.

Section ?? discusses existential unforgeability under known message attack
(EU-KMA) against ISS. For completeness we now provide a security definition
for EU-KMA which assumes that the known message is chosen randomly i.e.,
sampled uniformly. For the sake of exactness we define this as a random message
attack (EU-RMA). Note that for one-time signatures the adversary A is no longer
stateful as it does not require any interacting with the security game beyond
receiving (PK,msg, σ) triple for randomly chosen msg, and outputting a forgery.

Definition 3. A one-time signature scheme (KeyGen,Sign,Verify) is secure against
random message attacks (or, EU-RMA secure), if no polynomial-time adversary
A, given a signature on a random message can output a fresh forgery, except

with negligible probability:

Pr

 (msg 6= msg′)
and

Verify(PK,msg′, σ′) = 1

∣∣∣∣∣∣∣∣
(PK,SK)← KeyGen(1λ)

msg
$←− {−1, 0, 1}poly(λ)

σ ← Sign(SK,msg)
(msg′, σ′)← A(PK,msg, σ)

 ≈ negl(λ) .

The definitions given in this section are intended as a helpful guide for the
security assumptions of ISS. Because these definitions are asymptotic definitions
they do not cleanly map onto our practical attacks which deal with concrete
computational resources. We hope that follow up research will extend this work
to develop concrete definitions for security of ISS such as those given for RSA in
[1].

B Example Colliding Bundles

Our previous vulnerability report detailed colliding bundles which execute the
steal money and waste money attacks for single-signature bundles. In Section 5.2,
we described the structure of these attacks and showed how we targeted collisions
in value fields using the previous and following tags. Here, we describe in more
detail example multi-signature bundles that have the same hash and spend
different amounts to Alice and Eve.

Figure 6 describes two different bundles b1 and b2 that differ only in the
value fields in two transactions. We give the address the funds are being spent
to or from, the tags, and the values. Each bundle consists of 11 transactions:
one input spending funds that were in a multisig address controlled by Alice
and Eve (4), five outputs, including one change output, spending to Alice, Bob,
Carol, Eve, and back to Alice and Eve’s multisig address (0-3,10), and five extra
transactions which are present only to hold signature fragments from Alice and
Eve authorizing the spend (5-9). Signature-holding transactions have empty
addresses and values. The tags in first four transactions are generated using our
collision tool so that b1 and b2 will have the same hash.

Txn Address Tag b1 Value b2 Value

0 Bob WJ9JPWIYIVQSTFNYY9HCZUQRVBK 182219672 182219672

1 Eve CYBLAAX9ZA99Q9ZU9CXIU9DXCCW 1 129140164

2 Carol GOUKGHTRFTLRHPOBZRMDLM9QIEM 400000 400000

3 Alice FZZMZXCXWAI9SZAURCR9C9BXDCW 129140164 1

4 Alice,Eve 999999999999999999999999999 -500000000 -500000000

5 999999999999999999999999999 0 0

6 999999999999999999999999999 0 0

7 999999999999999999999999999 0 0

8 999999999999999999999999999 0 0

9 999999999999999999999999999 0 0

10 Alice,Eve 999999999999999999999999999 188240163 188240163

Fig. 6. An example multisig bundle spending from an address controlled by Alice and
Eve. Transaction 4 is the funding transaction, and transaction 10 is the change which
goes back to Alice and Eve. The collisions are in transactions 1 and 3. Transactions 5-9
are just to hold the signature fragments of Alice and Eve.

	Cryptanalysis of Curl-P and Other Attacks on the IOTA Cryptocurrency
	1 Introduction
	1.1 Vulnerability Status and Impact

	2 Related Work
	3 Background
	3.1 IOTA Design
	3.2 IOTA's Signature Scheme (ISS)
	3.3 Curl-P

	4 Cryptanalysis of Curl-P
	4.1 Differential Properties of Curl-P Transformation Function fr
	4.2 Solving for a 1-Trit Difference
	4.3 Finding Collisions

	5 Exploiting Collisions in Curl-P to Forge Signatures
	5.1 Chosen-Message Attack on ISS
	5.2 Multi-signature Attack
	5.3 Performance Analysis

	6 Discussion
	7 Conclusion
	8 Acknowledgements
	A Security Definitions
	B Example Colliding Bundles

