Beating the Blockchain Mapping Out Decentralized Namecoin and Emercoin Infrastructure By Kevin Perlow

Background

The Namecoin and Emercoin blockchains are designed to provide users with takedown-resistant domain names by distributing and decentralizing DNS records across a large number of devices while incorporating technology that provides historical data integrity. These blockchains support non-ICANN Top-Level Domains (TLDs) (.bit, .coin, .bazar, .lib, and .emc) that users can communicate to via alternate DNS resolution endpoints such as OpenNIC servers.

This BlackHat 2018 whitepaper details techniques designed to:

- Proactively identify malicious domains registered using these blockchains
- Map out additional infrastructure associated with known or suspected malicious domains

Key Findings

The generation of materials for this whitepaper resulted in the discovery of additional infrastructure related to previously reported malware families, including Dimnie, Neutrino, Smoke Loader, and Necurs. Domains and IP addresses associated with selected activity clusters are available in the appendix.

The most notable findings generated from this research pertain to the "RTM" banking malware first publicly disclosed in ESET's "Read The Manual" report. This malware is designed to target and steal information from users of remote banking and accounting software.¹ Findings associated with this malware include:

- 1) Strong evidence that the threat actor has continued its operations since ESET publicly disclosed this malware in 2017. As of this writing, this included activity detected on 24 July 2018 targeting a financial officer for an administrative district in a federal subject of Russia as well as email accounts from two Russian energy suppliers and one Russian energy transporter.
- 2) Evidence that the threat actor responsible for this activity has updated its malware since its disclosure, adding additional applications to the tool's target list.

This paper's primary purpose is to explain and demonstrate the mapping of decentralized infrastructure; in parallel, it will also detail several aspects of the RTM malware given its relevance to this task and its use in narrowly scoped attacks. Readers are encouraged to visit ESET's public report for a more comprehensive overview of RTM's functionality and history.

Technical Information

Decentralized Systems

Decentralized DNS typically refers to a system in which DNS records are stored across a large distribution of computers, preventing changes to these records from taking place if these changes aren't collectively agreed upon. By pairing this concept with blockchain technology to provide historical data integrity, decentralized DNS operates as a takedown-resistant system for hosting records at a low cost. In recent years, various threat actors have abused this concept by configuring their malware to communicate with these decentralized domain names as well as by registering decentralized domain names that resolve to illegal "carding shops." This type of activity generally resides on two blockchains:

- Namecoin- Namecoin was released on 18 April, 2018, allowing users to store DNS records across a decentralized blockchain. The blockchain was created in response to a bounty thread on the Bitcointalk.org forum.² Namecoin supports .bit TLDs and is built on top of Bitcoin technology.³
- Emercoin- Like Namecoin, Emercoin is a digital currency that supports a decentralized DNS for the .emc, .lib, .coin, and .bazar zones.⁴ Emercoin launched in 2013 and implemented its DNS in 2014.⁵

Each of these blockchains' functions is built upon more traditional cryptocurrency technology and each blockchain supports traditional cryptocurrency operations. As a result, concepts such as an "address" (a hashed and encoded public key for conducting transactions) and a wallet (a representation of a collection of addresses owned by a single entity)⁶⁷ apply to these blockchains and can be used to track and correlate transactions.⁸

Most importantly, **querying a domain registered on the Namecoin or Emercoin systems requires a DNS server specifically configured to read and resolve data hosted on these blockchains**. The most common observed method for doing this is to query an OpenNIC DNS server, as the OpenNIC project supports these TLDs.⁹ However, other custom nameservers are occasionally used.¹⁰

Transactional Mapping

Mapping transactions on the blockchain requires a basic understanding of three concepts:

- 1. Addresses- Transactions on a blockchain revolve around the concept of *addresses*, public keys that have been hashed and encoded. Each public key is paired with a private key belonging to an individual and these keys ensure that only that individual can conduct transactions (such as currency transactions or domain operations) with the cryptocurrency assigned to them.¹¹
- **2. Blocks** The term "blockchain" is derived from the mechanism used to append data to the decentralized database. When enough "new" data is accumulated, it is added to the blockchain in chunks. A hash of the previous chunk is included in the new dataset, permanently linking these together.¹²

3. Change- A transaction on the blockchain requires that the *entire* amount of the output of a previous transaction be spent when it is used as an input for a new transaction. The amount leftover from a transaction is either sent to a new address (under most software configurations) or sent back to the original address.¹³

Transactions are broken down into "inputs" (the sender) and "outputs" (the receiving addresses). Because Namecoin domain operations require that the user pay a fixed fee, differentiating between the "change" address and the "user" address in the outputs of such a transaction is simplified.

The Namecoin blockchain supports three main types of operations: new domain creation, a domain's first update, and a regular domain update. The following diagram illustrates how an analyst can use the concepts of addresses and change to track a user as they create and update domains on the blockchain:

Figure 1: A series of Namecoin transactions

In this example, Address 1 is used to conduct an operation (such as creating a new domain). The owner pays a fee, with the leftover amount moving to Address 2, a newly created address assigned to the same individual. This individual may then use Address 2 to conduct another Namecoin operation or to conduct a financial transaction.

Figure 2 demonstrates the application of this analytical method using data taken directly from the Namecoin blockchain. In this example, a threat actor uses a Namecoin transaction to generate a domain later used as a Shifu banking trojan C2 (s3lavaukraine[.]bit, as reported by Palo Alto networks).¹⁴ This figure depicts several items that must be considered in parallel:

- The "input" address of this transaction was previously an "output" address of an operation that updated the IP address for a domain named "healthshop[.]bit."
- The "output" of this slavaukraine transaction is an address that is used to register an additional domain, "klyatiemoskali[.]bit," which is also reported by Palo Alto networks as a Shifu banking trojan C2.
- The Namecoin blockchain serves as a permanent record for all historical IP addresses assigned to these domains and can be used to demonstrate infrastructure overlaps.

 Transaction	Bottom transaction fr 70bfdf2058556dbef91a330d37	om previous s 7 <u>b5be029cfb4b9c</u>	Change, address used to make second domain (klyatiemoskali)							
NFbbTh2tH73pqVBYN3 Initial funding we trace back	24 address- can	4.1950952 NMC	>	N4Yjkm4 NH9DNu	pbrFS7sGehJG33 TjddQ28W4X1d	RXGGtPnxjQNXH ZwWSG2KrWimgM	24.1650952 2te 0.02 NMC	NMC		
Summary				Name operation						
Size	258 bytes			Operation OP_NAME_NEW						
Block	<u>288965</u>			Name	<u>d/slavaukraine</u>					
Total inputs	24.1950952 NMC (1 scripts)			Hash	8771927dd4534d09c129605c26ace7b210dd068a					
Total outputs	24.1850952 NMC (2 scripts)					An address wa	is used in a trans	action that:		
Fees	0.01 NMC					-Made d/Slava				
						-Made an addi	ess that made d	/klyatiemoskali		
Address NFt	bbTh2tH73pqV	BYN3Kl	_pBtJ8	35ReR	uGuFa	What was this	address used fo	r previously?		
Date/time	Transaction	Block	Debit		Credit		Balance			
 2016-06-03 17:51:04	bd78adb5a8	288965	-24.1950	952 NMC			0 NMC			
2016-05-29 19:14:04	b0ab8493bd	<u>288285</u>			24.1950	952 NMC	24.1950952 NMC			

Figure 2: Examination of a Namecoin transaction used to create a Shifu banking trojan C2

A side-by-side comparison of two of these domains significantly strengthens the assessment that they belong to the same threat actor, as the domains were often assigned the same IPs on the same dates or resolved to the same IPs within the same timeframe.

Name d/hea Operations	lthshop	Name d/slavaukraine Operations					
Date/time	Value	Date/time	Value				
2017-01-11 20:45:33	{"ip":["0.0.0.0"]}	2017-01-12 17:20:10	{"ns":["a.dnspod.com","b.dnspod.com","c.dnspod.com"]}				
2017-01-08 22:08:34	{"ip":["192.52.166.149"]}	2017-01-11 20:45:33	{"ip":["0.0.0.0"]}				
2016-12-10 22:20:00	{"ip":["103.199.16.106"]}	2017-01-08 19:37:33	{"ip": ["192.52.166.149"]}				
2016-12-01 15:35:28	{"ip":["103.199.16.106"]}	2016-11-05 15:29:32	{"ip": ["103.199.16.106"]}				
2016-11-05 15:29:32	{"ip":["87.120.37.85"]}	2016-06-03 20:43:10	{"ip": ["103.199.16.106"]}				
2016-05-29 19:14:04	{"ip":["87.120.37.85"]}	2016-06-03 17:51:04	8771927dd4534d09c129605c26ace7b210dd068a				
2016-05-23 16:31:08	{"ip":["87.120.37.85"]}	These two .bit do	These two .bit domains have shared the same IP,				
2016-05-22 16:13:59	Oc5ebaa3db71c6b83609273267d1facd92309805	were both updated and zeroed out at the same time, and are associated on the blockchain.					

Figure 3: Side-by-side comparison of healthshop[.]bit and slavaukraine[.]bit

This technique can be scripted, allowing analysts to scale these data collection and comparison steps. In doing so, over a dozen domains related to this threat can be identified. A full list of these domains is available in the appendix.

Figure 4: Infrastructure associated with Shifu banking trojan actors

Indexing and Pivoting

The above approach serves as a high-confidence mechanism for mapping out infrastructure given the cryptographic relationships necessary to conduct activity on a blockchain; however, this method is cumbersome and requires preexisting knowledge of at least one malicious or suspicious domain.

By **indexing blockchain data using a tool such as Splunk** and combining analytics specific to blockchain technology with traditional pivoting methodologies, an analyst can *proactively* identify malicious domains and leverage Splunk's subsearching features to quickly pivot out to find additional infrastructure. This research primarily uses the following four analytics:

- 1) Domains with a large number of different historical IP address resolutions.
- 2) Domains that have operations recorded on a large number of blocks.
- 3) Domains assigned an unusual or uncommon nameserver.
- 4) Domains that were created, updated, or modified on the same or nearby block as another malicious domain.

Several of these are derived from a basic principle: it would be atypical for a legitimate user of this technology to be making frequent changes to the IP address resolution for his or her domain, as that would imply a regular changing of infrastructure and would necessitate conducting additional transactions on the blockchain. Put more simply: this would likely be an inconvenience.

Figure 5 highlights several malicious domains that emerge from a Splunk query that uses this metric (there are many valid inputs for such a query, including filtering for unique IPs and filtering out non-IP address entries). This query identified a number of suspicious domains as well as several domains that can quickly be verified as malicious and categorized via OSINT research:

- makron[.]bit (Smoke Loader)^{15 16}
- makronwin[.]bit (Smoke Loader)^{17 18}
- quitsmokings[.]bit (shares infrastructure with Smoke Loader)¹⁹
- sectools[.]bit (Dimnie) ^{20 21}
- vpnvirt[.]bit

A list of infrastructure identified through the pivoting techniques described in this whitepaper is available in the appendix.

megashara	36
bay	23
makron	22
bitcoincommodities	21
makronwin	20
zexernet	20
zmanhoodmana	20
bitshara	19
satoshidice	19
generationp	18
pationare	18
bitnotes	17
couchsurfing	17
levashov	17
porshegate	17
quitsmokings	17
univ	17
vinik	17
kuxkux	15
sectools	15
weihnachten	15
bitte-ein	14
black-market	14
choosenone	14
derevo	14
myblackass	14
vpnvirt	14
deltazere	12

Figure 5: Initial query to identify suspicious domains

At the time of this research and writing, vpnvirt[.]bit was uncategorized in open source, appearing only in automated sandbox reports as a DNS request. In these sandboxed runs of its parent malware, vpnvirt[.]bit is requested alongside vpnrooter[.]bit, indicating a relationship.²² Querying for these two domains in the Splunk database presents the user with the IP addresses historically assigned to these domains. These include shared infrastructure and blocks (Figure 6, red) and similar infrastructure (blue).

block 0 🖌	Domain ^	DataInput 0
359024	volstat	83.243.41.162
360003	volstat	91.191.184.159
361797	volstat	91.191.184.33
292242	vpnrooter	08e1a96c11f141533f9763d32
292258	vpnrooter	185.61.149.70
298988	vpnrooter	185.128.42.237
299344	vpnrooter	91.215.153.31
306131	vpnrooter	213.252.247.94
309176	vpnrooter	185.25.51.25
317342	vpnrooter	213.252.246.115
323629	vpnrooter	185.25.51.221
344943	vpnrooter	185.203.118.168
346361	vpnrooter	173.242.124.228
350536	vpnrooter	103.208.86.
353970	vpnrooter	185.99.132 51
354759	vpnrooter	169.239.129 25
292242	vpnvirt	cdd48b680f6bde040d98bae2
292254	vpnvirt	185.61.149.70
298988	vpnvirt	185.128.42.237
299344	vpnvirt	91.215.153.31
306131	vpnvirt	213.252.247.94
309186	vpnvirt	185.25.51.25
317342	vpnvirt	213.252.246.115
323637	vpnvirt	185.25.51.221
344943	vpnvirt	185.2.82.209
350536	vpnvirt	103.208.86 254
353970	vpnvirt	169.239.129.25
354759	vpnvirt	185.99.132 ¹⁰
356512	vpnvirt	169.239.129 100

Figure 6: Pivoting to identify IP addresses for vpnvirt[.]bit and vpnrooter[.]bit

From this pivot, the following three IPs appear in an open source report titled "Read the Manual" from ESET researchers:²³

- 185.61.149.70
- 185.128.42.237
- 91.215.153.31

These IP addresses are listed as C2 infrastructure for a malware family referred to as "RTM" (named after a decrypted string found in the malware). This malware is notable for being distributed in narrowly scoped attacks, and is designed to identify and steal information from remote banking and account management software.

As an additional pivoting step, we can strengthen the possibility that the vpnvirt[.]bit and vpnrooter[.]bit domains are associated with this malware by re-inputting (either as a separate query or through a subsearch) the IP addresses historically assigned to these domains. The result of this query will then expand the list of infrastructure to all domains associated with these IP addresses (Figure 7).

299063	checkon	213.252.247.94
298988	vpnvirt	185.128.42.237
298988	vpnvirt	185.128.42.237
298988	vpnrooter	185.128.42.237
298988	vpnrooter	185.128.42.237
297199	vpnkeep	185.128.42.237
297199	vpnkeep	185.128.42.237
296163	vpnomnet	185.128.42.237
296163	vpnomnet	185.128.42.237
296163	vpnkeep	185.128.42.237
296163	vpnkeep	185.128.42.237
292258	vpnrooter	185.61.149.70
292258	vpnrooter	185.61.149.70
292258	vpnomnet	185.61.149.70
292258	vpnomnet	185.61.149.70
292254	vpnvirt	185.61.149.70
292254	vpnvirt	185.61.149.70
292237	vpnkeep	185.61.149.70
292237	vpnkeep	185.61.149.70
291928	checkon	217.23.6.29

Figure 7: Additional pivoting

Two newly identified domains, **vpnomnet[.]bit and vpnkeep[.]bit**, are directly referenced in ESET's report. In addition, changes to these domains are made in close temporal proximity with the vpnvirt and vpnrooter domains. As a result, analysts can assess with high confidence **that these two domains are related to this threat actor's activity**.

As an additional step, analysts can reverse engineer the malware communicating with newly discovered domains in order to validate that the same malware family is being used. ESET's "Read the Manual" report highlights several specific technical characteristics for the RTM malware, including:

- A specific export (DllGetClassObject) called to run the malware
- Unique decrypted strings, including "RTM_Module" for which the malware is named
- Unique decrypted configuration fields such as "cc.url.1," "botnet-prefix," and "scan-files"
- A routine that checks window class and title names and compares them to a hardcoded list to identify remote banking and account management software. The malware sets a marker if such software is found.

Figure 8 depicts the decrypted strings identified in memory during manual debugging of the malware. These strings match those described in ESET's report, including the malware's configuration fields.

Address	He:	<														ASCII	
00BBC3B0	65	55	72	6C	43	61	63	68	65	00	00	00 1E	00	00	00	eUrlCache	
00BBC3C0	01	00	00	00	OC.	00	00	00	4E	65	74	41 70	69 (33	32	NetApi32	Decrypted Strings that Help Identify the Malware
00BBC3D0	2E	64	6C	6C	00	00	00	00	1A	00	00	00 01	. 00	00	00	.dll	becrypted strings that help identify the warware
00BBC3E0	08	00	00	00	4E	65	74	55	73	65	72	45 GE	5 75	6D	00	NetUserEnum.	
00BBC3F0	22	00	00	00	01	00	00	00	10	00	00	00 4E	65	74	41	"NetA	
00BBC400	70	69	42	75	66	66	65	72	46	72	65	65 00	00 (00	00	piBufferFree	kovloggar last data
00BBC410	1E	00	00	00	01	00	00	00	DC.	00	00	00 69	9 70	68	-6C	[iph]	Keyloggel last-uata
00BBC420	70	61	70	69	2 E	64	6C	6C	00	00	00	00 22	00	00	00	papi.dll"	keylogger last wed caption
00BBC430	01	00	00	00	10	00	00	00	47	65	74	4E 65	74	77	6F	GetNetwo	Keylogger.last-whu-caption
00BBC440	72	6B	50	61	72	61	6D	73	00	00	00	00 14	00	00	00	rkParams	botnot profix
00BBC450	01	00	00	00	09	00	00	00	53	6F	66	74 77	61	72	65	sottware	bothet-prenx
UUBBC460	SC.	00	00	00	22	00	00	00	01	00	00	00 1:	00	00	00	No. all contractors of the	botnot id
00BBC470	68	65	19	6C	6F	67	67	65	12	ZE.	6C	61 73	74	20	64	Keylogger.last-d	bothet-lu
00BBC480	61	14	51	00	ZA.	00	00	00	01	00	00		00	00	- 00	ata.*	co connect interval
00880490	68	65	12	60	65	56	54	65	14	25	6C	61 / 2	. 74	20	- 66	reyrogger.rast-w	CC.COnnect-interval
DOBBC4A0	6E	64	20	63	17	20	64	69	65	00	70	00 20	5 00	00	00	hu-caption	acon filos
00880460	1 25	20	20	61	44	74	20	65	70	20	<u> </u>	70 61	- 24	- 67	- 60	In last-ove-path	scan-mes
0000000400	12	20	00	60	61	67	20	80	68	80	20	00 63	6	74	- 20	The screee-pacity water	
00880480	25	47	41	46	42	67	20	65	GA.	20	50	00 32	00	67	- 00	IncAOCaindYP	
0000000460	02	- 26	36	- 66 I	07	õõ.	00	00	20	25	22	응 등	2 2 5	24	00	0.2.5.4	
00880500	16	00	00	00	01	00	00	00	00	66	00	00 62	65	74	65	hotn	
00880510	65	74	20	20	72	65	66	69	78	00	00	00 14	00	00	00	et-prefix	
00BBC520	01	00	00	001	ñā.	00	00	00	62	6E	74	GE G	74	20	69	hotnet-i	
00BBC530	64	ňň.	ññ.	ňŏ	22	ññ.	ňň.	ñŏ	01	ňñ.	00	00 13	00	00	00	d"	
00BBC540	63	63	2 E	63	6E	6E	6E	65	63	74	20	69 68	74	65	72	cc.connect-inter	cc.un.1
00BBC550	76	61	6C	00	ŽA.	00	00	00	01	00	00	00 14	00	00	00	val.*	an control of
00BBC560	47	65	74	53	79	73	74	65	6D	44	65	66 61	. 75	-6C	74	GetSystemDefault	cc.un.z
00BBC570	55	49	4C	61	6E	67	75	61	67	65	00	00 18	00	00	00	IITI annuane	
00BBC580	01	00	00	00	OC.	00	00	00	52	54	4D	5F 40) 6F	64	-75	RTM_Modu	
00BBC590	6C	65	45	50	00	00	00	00	1A	00	00	00 01	. 00	00	00	1eEP	
00BBC5A0	OA.	00	00	00	73	63	61	6E	2 D	66	69	6C 65	73	00	00	scan-files	

Figure 8: Decrypted RTM strings

Figure 9 provides functional validation. In the top code block, the malware attempts to determine whether or not the string "E-Plat" appears in the current window title. E-Plat refers to account and salary management software owned by B&N Bank (БИНБАНК), an Eastern European financial institution.²⁴ If this software is found, the malware sets a marker for MDM bank (acquired by B&N in 2015/2016 and still referenced in some E-Plat documentation²⁵). If not, it jumps to the next check.

This check also aligns with ESET's high-level description of the malware's functionality, providing final validation that the malware identified through this infrastructure pivoting is indeed attributable to the same threat actor group and activities. Notably, ESET's report does not mention the "E-Plat" software as being among the targeted platforms, suggesting that the threat actors may have updated their malware to target new software.

Figure 9: Software check performed by RTM malware (note that a jump to the "successful" check was forced to generate the condition needed to place the "MDM" marker in the EAX register).

During reverse engineering, one additional notable characteristic was identified. While the malware will make DNS requests using OpenNIC servers, it will also make a direct GET request to a domain's page on Namecha[.]in, a public Namecoin blockchain database. The malware will pull down the most recent IP address for the domain and use this in place of DNS resolution should traditional mechanisms be unavailable.

00980044	push eax	[ebp+C]+L"/name/d/dothitdream"	^	Hide FPU
00980048	Inush eax	[copie].c yname/dydoebiedrean	Ì	
00980049	mov eax, dword ntr ss: [ehn-C]	[ebn-cl:L"GET"		EAX 4051302C <winnttp.winhttpupenkequest></winnttp.winhttpupenkequest>
009BD04C	nush eax	feeb clie ge.		EBX 0104FEDF
009BD04D	nush edi			ECX 00000000
009BD04E	mov eax.dword ptr ds:[9D9E18]			EDX 014A800C "namecha.in"
009BD053	mov eax.dword ptr ds:[eax]	-	-1	EBP 0104FE98
009BD055	call eax			ESP 0104FE54
009BD057	mov dword ptr ss:[ebp-8],eax	eax:WinHttpOpenRequest		ESI 014A3000
009BD05A	cmp dword ptr ss:[ebp-8],0			EDI 014A3100
009BD05E	je 0002_dropped_dll.9BD20A			
009BD064	cmp_dword_ptr_ss:[ebp+14],2			EIP 009BD055 0002_dropped_d11.009BD055
009BD068	jne 0002_dropped_dl1.9BD086			
009BD06A	mov dword ptr ss:[ebp-14],3300			EFLAGS 00000206
009BD071	push 4			ZF 0 PF 1 AF 0
009BD073	lea eax,dword ptr ss:[ebp-14]			OF 0 SE 0 DE 0
00980076	push eax			CE 0 TE 0 TE 1
00980077	push if	False of a Uldershift advanced		
00980079	mov eax, uword per ss:[eop-s]	[epb-s]:rgocpicaream.		LastError 0000000 (ERPOR SUCCESS)
009BD07C	mover eax dword of a constant			LastStatus CO00007C (STATUS NO TOKEN)
00980070	mov eax, dword ptr ds.[505204]			Eaststatus Commerce (STATOS_NO_TOKEN)
00980084	call eav	0104FE54 014A3100		
00980086	cmn dword ntr ss: [ehn+18],1	0104FE58 0009AB74 _"GET"		
009BD08A	ine 0002 dropped dll.9BD0C9	0104FE5C 000B8AE4 ///nam	1e/	/d/dotbitdream"
		0104FE60 0009AC5C ."HTTP,	/1	1.1"
		0104FE64 00000000		
		0104FE68 00000000		
		U1U4FE6C 00800108		
			11	cuream.bit
		0104FE74 0104FF3C & 192.3	10 it	53.180.128 tdream bit"

Figure 10: GET request to Namecha[.]in to resolve the IP for an RTM C2

Emercoin

These pivoting techniques are also applicable to the Emercoin blockchain. For example, pivoting using Jstash[.]bazar (a well-known domain for the Jokerstash carding website) leads to several related domains and IP addresses:

- 185.61.137.166
- 185.61.137.177
- 185.62.190.164
- 190.115.27.130
- cvv[.]bazar
- cvv2[.]bazar

- dumps[.]bazar
- j-stash[.]bazar
- joker-stash[.]bazar
- jokerstash[.]bazar
- stash[.]bazar
- track2[.]bazar

Similarly, the Neutrino C2 "brownsloboz"²⁶ appears on both blockchains with multiple registered TLDs. By using the IP addresses from one blockchain, an analyst can pivot *across* indexed blockchains through a Splunk subsearch, revealing the following infrastructure:

- 46.183.218.42
- 185.234.216.58
- brownsloboz[.]bit
- weare[.]bit

- porfavor[.]bit
- brownsloboz[.]bazar
- brownsloboz[.]lib
- brownsloboz[.]emc

Analytical Limitations

Expired Infrastructure

Whereas the transactional analysis method provides reactive but cryptographically-backed results leading to high-confidence infrastructure relationships, the infrastructure mapping methodology provides faster results and easier pivoting; however, it has analytical limitations. As an example, mapping out infrastructure related to cash-money-analitica[.]bit, an additional ESET-identified RTM C2, leads to several additional domains:

000065		16.0.11.00
323066	xoonday	46.8.44.23
323066	volstat	164.132.225.173
323066	volstat	164.132.225.173
323066	lookstat	164.132.225.173
323066	lookstat	164.132.225.173
323066	sysmonitor	164.132.225.173
323066	sysmonitor	164.132.225.173
322817	leomoon	46.8.44.23
322817	leomoon	46.8.44.23
322817	firststat	46.8.44.23
322817	firststat	46.8.44.23
322817	fooming	46.8.44.23
322817	fooming	46.8.44.23
318404	feb96eb2aa59	109.236.82.150
315814	feb96eb2aa59	5.154.191.225
315038	feb96eb2aa59	91.207.7.69
314935	cash-money-analitica	91.207.7.69

Figure 11: Domains identified by pivoting using cash-money-analitica[.]bit

One of these domains, feb96eb2aa59[.]bit, is cited by ESET researchers as an RTM C2. However, further analysis (using a Splunk "values" statistical transformation) indicates that the other domains only have a single IP address overlap with these RTM C2s, along with a one-year gap between when each cluster was assigned this IP address (Figure 9).

_time 0	block 🌣 🖌	Domain 0	/	DataInput 0
2016-10-09 20:14:49	308601	money-cash-analitica		188.138.71.117
2016-10-09 20:14:49	308601	cash-money-analitica		188.138.71.117
2017-07-22 21:44:29	352362	fooming		188.138.71.117
2017-07-22 21:44:29	352362	fooming		188.138.71.117
2017-07-22 21:44:29	352362	leomoon		188.138.71.117
2017-07-22 21:44:29	352362	leomoon		188.138.71.117
2017-07-22 21:44:29	352362	volstat		188.138.71.117
2017-07-22 21:44:29	352362	volstat		188.138.71.117

Figure 9: Additional analysis on cash-money-analitica[.]bit infrastructure relationships

OSINT reporting from FireEye researchers associates domains in this additional cluster (such as xoonday[.]bit and volstat[.]bit) with a malware family tracked as CHESSYLITE.²⁷ Reverse engineering and analysis of a malware sample communicating with these domains²⁸ indicates that it contains a SOCKS5 module common to several other malware families and that the malware will eventually attempt brute force logins to several APIs using a hardcoded dictionary of stolen credentials.

Given the limited direct and temporal overlaps with the known RTM C2s and this clear difference in functionality, it is likely that these domains are unrelated to the RTM malware or threat actors. Most importantly, this example demonstrates that each additional "layer" of pivoting lowers the confidence level of infrastructure relationships in the absence of additional corroborating data and analysis.

Nameserver Delegation

In some cases, threat actors add an NS record in lieu of an IP address when configuring their infrastructure. For example, the Gandcrab C2 "nomoreransom[.]bit"²⁹ is assigned "dns1[.]soprodns[.]ru" and "dns2[.]soprodns[.]ru" without an IP address. This prevents an analyst from easily identifying and blocking an IP address associated with this malware. Possible solutions to this obstacle include:

- A daily script that performs an DNS query to these name servers to identify and index these IPs
- Parsing PCAP data from blogs that regularly track these threats, such as Malware-Traffic-Analysis³⁰

In addition, the use of more unique nameservers can itself expose additional infrastructure. The following domains use a "soprodns" nameserver:

- esetnod32[.]bit
- kimchenin[.]bit
- nomoreransom[.]bit
- spinner[.]bit
- xylibox[.]bit
- emsisoft[.]bitgandcrab[.]bit
- bleepingcomputer[.]bit
- sophos[.]bit
- mitnicksecurity[.]bit
- cryptoinsane[.]bit
- securityweekly[.]bit
- darkreading[.]bit

Several of these are widely reported Gandcrab ransomware C2s; of the others, several are also named after security companies, researchers, or publications, suggesting that they may also be related.

Conclusions

In recent years, several malware families have adopted decentralized infrastructure to create takedownresistant domains. This paper has highlighted how analysts can use several characteristics of blockchain technology to map out and identify suspicious or malicious domains and nameservers. These include using the cryptographic nature of blockchain transactions to create high-confidence relationships as well as leveraging pivoting techniques against an indexed dataset. In addition to these more CTI-oriented techniques, analysts can also monitor for DNS queries to non-standard nameservers, including OpenNIC IP addresses, as a potential indicator of anomalous activity.

Appendix: Selected Clusters

Note: These lists do not include the time ranges for when this infrastructure was active. Researchers are encouraged to visit Namecha[.]in to query domains for this information.

Dimnie^{31 32 33}

- avtotransltd[.]bit •
- bitmakler[.]bit •
- coinsolutions[.]bit •
- cryptobase[.]bit
- generationp[.]bit •
- gosmos[.]bit •
- investorshub[.]bit •
- newmotors[.]bit •
- oneindexers[.]bit •
- oxfordcontractors[.]bit •
- porshegate[.]bit •
- sonygame[.]bit
- worldmed[.]bit
- 103.208.86.10 •
- 103.208.86.172
- 103.208.86.205
- 103.208.86.219 •
- 103.208.86.224 •
- 103.208.86.3 •
- 103.208.86.57 •

Shifu

- microurl[.]bit •
- beautyforum[.]bit •
- healthshop[.]bit •
- windata[.]bit
- foreveralOne[.]bit •
- foreveryOung[.]bit
- klyatiemoskali[.]bit •
- slavaukraine[.]bit

- 103.208.86.65
- 104.193.8.12 •
- 107.181.187.39 •
- 109.201.142.101 •
- 109.201.148.85 • •
- 162.213.26.82 •
- 185.147.34.78 •
- 185.25.51.177
- 185.61.149.159
- 185.82.218.111 •
- 185.82.219.105

- 195.123.214.74 •
- 195.123.216.23 •
- 195.123.217.227
- 195.123.218.177 •

contentdeliverynet[.]bit

- 195.123.224.193
- 195.123.224.83
- 195.123.224.87 •
- 195.123.225.28 •
- 195.123.233.138 •
- 195.123.233.150 •
- 195.123.233.162 •
- 195.123.233.173 •
- 195.123.233.180 •
- 195.123.233.229 •
- 195.123.233.243 •
- 199.115.228.44
- 199.168.139.214
- 5.34.183.254
- 86.106.131.71
- 87.120.37.42
- 87.121.52.185
- 92.87.236.203
- 103.199.16.106
- 94.156.77.40
- 94.156.77.84 •
- 210.16.120.241 •
- 103.199.100.100 •
- 27.0.235.115
- 192.52.166.149 •
- 87.120.254.51 •
- 87.120.254.52

- 185.82.217.156 •
- 185.99.132.11 ٠
- 185.99.132.110
- 185.99.132.45
- 192.99.81.69

- •

osdata[.]bit

clientdata[.]bit

103.199.16.56

87.120.37.85

125.212.205[.]209

•

•

•

•

•

•

RTM

Mail-RU Cluster (associated with active RTM domains at the time of this publication)

- 149.202.30.7 •
- 185.82.219.79 •
- 195.123.217.232 •
- 195.123.217.242
- 195.123.225.58

fde05d0573da Cluster

- 109.248.32.149 •
- 109.248.32.152 •
- 138.201.104.161 •
- 154.70.153.125
- 158.255.208.197 •
- 158.255.6.150 •
- 178.208.91.222 •
- 185.117.88.123 •
- 185.117.89.112 •
- 185.141.25.167 •
- 185.82.201.45 •
- 212.48.90.155

VPN Cluster

- 103.208.86.122
- 103.208.86.158
- 103.208.86.254 •
- 142.0.33.15 •
- 169.239.129.100 •
- 169.239.129.25 •
- 173.242.124.228 •
- 185.128.42.237 •
- 185.2.82.209 •
- 185.203.118.168 •

Analitica Cluster

- 131.72.138.169 •
- 185.141.27.249 •
- 185.169.229.42 •
- 188.138.71.117
- 200.74.240.134

- 5.149.255.199 •
- 5.149.255.217 •
- 54.38.49.245 •
- mail-ru-stat[.]bit
- mail-ru-stat-cdn[.]bit •
- 213.184.127.137
- 5.149.248.164 •
- 5.154.190.153 •
- 5.154.190.167
- 5.154.190.168 •
- 5.154.190.189 ٠
- 5.154.191.154 •
- 5.154.191.174 ٠
- 5.154.191.244
- 5.154.191.246 •
- 50.7.115.64
- 81.19.82.8 •
- 185.25.51.221
- 185.25.51.25
- 185.61.149.70
- 185.99.132.10 •
- 185.99.132.51 .
- 199.180.119.19 •
- 199.180.119.20 •
- 213.252.246.115 •
- 213.252.247.94 •
- 217.23.6.29 .
- 200.74.240.80 •
- 37.1.206.78
- 5.154.191.57 •
- 91.207.7.69
- 93.170.168.218

- mail-ru-stat-counter[.]bit
- mail-ru-stat-countercdn[.]bit
- 85.25.41.84 •
- 86.110.117.5 •
- 86.110.117.6 •
- 95.183.52.182 •
- b9d0f3a3[.]bit •
- d47ea26b7faa[.]bit ٠
- dotbitdream[.]bit ٠
- f06f77c950a9cf20c[.]bit ٠
- fde05d0573da[.]bit ٠
- hfh4795hdsk[.]bit •
- ltst0105xht0[.]bit
- onewayticket[.]bit •
 - 91.215.153.31
 - applerok[.]bit
 - bigleon[.]bit •
 - checkon[.]bit •
 - djslon[.]bit ٠
 - vpnkeep[.]bit •
 - vpnomnet[.]bit ٠
 - vpnrooter[.]bit •
 - vpnvirt[.]bit •
 - 93.190.139.66
 - cash-moneyanalitica[.]bit
 - money-cash-• analitica[.]bit

⁷ https://bitcoin.stackexchange.com/questions/13059/whats-the-difference-between-a-wallet-and-an-address

⁸ https://www.sans.org/summit-archives/file/summit-archive-1498165491.pdf

⁹ https://www.opennic.org/

¹⁰ https://researchcenter.paloaltonetworks.com/2017/01/unit42-2016-updates-shifu-banking-trojan/

¹¹ https://blockgeeks.com/guides/blockchain-address-101/

¹² https://blockgeeks.com/guides/what-is-hashing/

¹³ https://en.bitcoin.it/wiki/Change

¹⁴ https://researchcenter.paloaltonetworks.com/2017/01/unit42-2016-updates-shifu-banking-trojan/

¹⁵ https://cloudblogs.microsoft.com/microsoftsecure/2018/04/04/hunting-down-dofoil-with-windows-defender-atp/

¹⁶ https://www.hybrid-

analysis.com/sample/b75ee6221a09097bde66e5668f6a74c7a968d247b084a339d2a5a2921f41c702?environmentI d=100

¹⁷ https://cloudblogs.microsoft.com/microsoftsecure/2018/04/04/hunting-down-dofoil-with-windows-defender-atp/

¹⁸ https://www.hybrid-

analysis.com/sample/b75ee6221a09097bde66e5668f6a74c7a968d247b084a339d2a5a2921f41c702?environmentI d=100

¹⁹ https://www.malware-traffic-analysis.net/2017/11/02/index.html

²⁰ https://researchcenter.paloaltonetworks.com/2017/03/unit42-dimnie-hiding-plain-sight/

²¹ https://www.hybrid-

analysis.com/sample/a8ba70be73578d901c5e2427fd2f63e06801dcba8726a82f1875d84ba147aaa3/58a56f1faac2 edca060d6cde

22

https://www.reverse.it/sample/cfa9e166e70ca46abd21bd7a30e5569bed7e0b22107d6f2a3bbff097b3891e06?environmentId=100

²³ https://www.welivesecurity.com/wp-content/uploads/2017/02/Read-The-Manual.pdf

²⁴ https://www.binbank.ru/corporate-clients/dbo/eplat/

²⁵ https://eng.binbank.ru/news/binbank-news/44812/

²⁶ https://www.fireeye.com/blog/threat-research/2018/04/cryptocurrencies-cyber-crime-blockchain-infrastructure-use.html

²⁷ https://www.fireeye.com/blog/threat-research/2018/04/cryptocurrencies-cyber-crime-blockchain-infrastructure-use.html

²⁸ https://www.hybrid-

analysis.com/sample/68c746df7df35b3379a4d679fc210abdb2032b3c076ec51a463abe1e0e18345f?environmentId =100

²⁹ https://www.symantec.com/security-center/writeup/2018-013106-5656-99

³⁰ https://www.malware-traffic-analysis.net/2018/01/29/index.html

³¹ https://researchcenter.paloaltonetworks.com/2017/03/unit42-dimnie-hiding-plain-sight/

³² https://habr.com/company/bizone/blog/351122/

³³ https://securelist.ru/trojan-dimnie-and-ransomware-purga/90272/

¹ https://www.welivesecurity.com/wp-content/uploads/2017/02/Read-The-Manual.pdf

² https://bitcointalk.org/index.php?topic=6017

³ https://bit.namecoin.org/

⁴ https://peername.com/emercoin/

⁵ https://emercoin.com/en/road-map

⁶ https://blockgeeks.com/guides/blockchain-address-101/