
Finding Xori
Malware Analysis Triage with Automated Disassembly

Amanda Rousseau
Rich Seymour

About Us

Amanda Rousseau Rich Seymour
Sr. Malware Researcher,

Endgame, Inc.

@malwareunicorn

Sr. Data Scientist,

Endgame, Inc.

@rseymour

Project started in Jan 2018

● Approx 6 months

● ~36K lines of code

Quick Overview The Current State of
Disassemblers

Functionality & Features

Brief overview of pros and cons with current

popular open source PE disassemblers.

Overview how we pulled together the different

aspects of disassemblers and emulator

Usage & Demo
How the output is used for automation. Applying

the tool on various malware samples and

shellcode.

The Problem

There are millions of malware samples to look at and a

few reverse engineers.

We need to change the way we are going about this if we

are going to keep up.

How to leverage large scale disassembly in an automated

way with many samples?

● Improve the scalability in malware analysis

● Integration and automation

Present Day Common Disassemblers

Capstone Radare2 IDA Pro Hopper Binary
Ninja

Size small small large medium large

Stability ✔ ✖ ✔ ✔ ✔

Price - - $$$ $ $$

Cross
Platform

✔ ~ ✔ ✖ ✔

Usability ~ ~ ✔ ~ ~

Accuracy ~ ~ ✔ ~ ~

Integration ✔ ~ ✖ ✖ ✖

Requirements

● Fast development

● Stability and resilience

● Cross platform

● Output can be easily integrated

● Ease of use

● Core feature set

● Output accuracy

Evaluating Disassemblers

The first step - Diving into the code:

● Verifying the accuracy of various disassemblers

● Understand each of their strengths and limitations

We adopted different aspects of disassemblers and emulator modules.

● Much of Capstone is also based on the LLVM & GDB repositories

● QEMU is the emulation is straightforward, easy to understand

● Converted some of the logic into Rust, while also fixing a few bugs along the way.

Evaluating Example

\x66\x90 XCHG AX, AX [Objdump]✔

X86 32bit:

NOP [Capstone]✖

NOP [Distorm]✖

XCHG AX, AX [IDA Pro]✔

OpSize Opcode

Developed in
Rust
Why Rust?

● Same capabilities in C\C++

● Stack protection

● Proper memory handling (guaranteed memory

safety)

● Provides stability and speed (minimal runtime)

● Faster development

● Helpful compiler

Current Features
● Open source

● Supports i386 and x86-64 architecture only

at the moment

● Displays strings based on referenced

memory locations

● Manages memory

● Outputs Json

● 2 modes: with or without emulation

○ Light Emulation - meant to enumerate

all paths (Registers, Stack, Some

Instructions)

○ Full Emulation - only follows the

code’s path (Slow performance)

● Simulated TEB & PEB structures

● Evaluates functions based on DLL exports

Design Memory Manager

Image

TEB

PEB

DLL headers

Analysis

Functions

Disasm

Imports

PE Loader

State

CPU Registers & Flags

Stack

Loop Tracking

Analysis

This structure contains the CPU state of the registers &
flags, a new copy of the stack, and short circuiting for
looping during emulation.

State

Handles the loading of the PE image into memory and
sets up the TEB/PEB as well as initializing the offsets to
loaded DLLs and import table.

PE Loader

This structure contains all of the mmap memory for the
Image, TEB/PEB, and DLL headers. Accessors for
Read & Write to avoid errors in inaccessible memory.

Memory Manager

The core container for the disassembly, functions, and
imports.

Roll your own PE Parser
● Although a few Rust PE parsers exist: goblin, pe-rs

we decided to create our own.

● Chose to write it using the nom parser combinator

framework

● Ideally less error prone due to safe macro

constructions

● Many lessons learned

● From a historical perspective a PE parser start

reading a 16 bit DOS file

● Then optionally switches to a PE32 or a PE32+

● This is like a history of DOS and Microsoft Windows

in a single parser.

Analysis Enrichment

● The header is used to build the memory sections of

the PE Image

● Similar to the PE loader in windows, it will load the

image similar to how it would be loaded in the

addressable memory. Where the imports are given

memory address, rewritten in the image.

Image

.text

.data

.idata

.rsrc

Stack

DLLs

TEB

PEB

Symbols
● We needed a way to load DLL exports and header

information without doing it natively.

● Built a parser that would generate json files for

consumption called pesymbols.

● Instead of relying on the Import Table of the PE, it

generates virtual addresses of the DLL and API in the

Image’s Import Table. This way you can track the

actual address of the function being pushed into

various registers.

● The virtual address start is configurable as well as the

json location.

{
 "name": "kernel32.dll",
 "exports": [
 {
 "address": 696814,
 "name": "AcquireSRWLockExclusive",
 "ordinal": 1,
 "forwarder": true,
 "forwarder_name": "NTDLL.RtlAcquireSRWLockExclusive"
 },
 {
 "address": 696847,
 "name": "AcquireSRWLockShared",
 "ordinal": 2,
 "forwarder": true,
 "forwarder_name": "NTDLL.RtlAcquireSRWLockShared"
 },
 ...

"dll_address32": 1691680768, 0x64D50000
"dll_address64": 8789194768384, 0x7FE64D50000
"function_symbol32":
"./src/analysis/symbols/generated_user_syswow64.json",
"function_symbol64":
"./src/analysis/symbols/generated_user_system32.json",
...

Configurable in xori.json

Generated_user_syswow64.json

Dealing with Dynamic API Calls

The Stack

The TEB and PEB structures are simulated based on the

the imports and known dlls in a windows 7 environment.

TEB/PEB

Segregated memory for the local memory

storage such as the stack.

Memory Management

If references to functions are pushed into a

register or stack will be able to be tracked.

Dealing with Dynamic API Calls
0x4010ed A3 00 10 40 00 mov [0x401000], eax
0x4010f2 68 41 10 40 00 push 0x401041 ; LoadLibraryA
0x4010f7 FF 35 00 10 40 00 push [0x401000]
0x4010fd E8 C9 01 00 00 call 0x4012cb
0x401102 83 F8 00 cmp eax, 0x0
0x401105 0F 84 CF 02 00 00 je 0x4013da
0x40110b A3 04 10 40 00 mov [0x401004], eax ; wI
0x401110 68 4E 10 40 00 push 0x40104e ; VirtualProtect
0x401115 FF 35 00 10 40 00 push [0x401000]
0x40111b E8 AB 01 00 00 call 0x4012cb
0x401120 83 F8 00 cmp eax, 0x0
0x401123 0F 84 B1 02 00 00 je 0x4013da
0x401129 A3 08 10 40 00 mov [0x401008], eax
0x40112e 6A 00 push 0x0
0x401130 6A 00 push 0x0
0x401132 68 1C 10 40 00 push 0x40101c ; shell32.dll
0x401137 FF 15 04 10 40 00 call [0x401004] ; kernel32.dll!LoadLibraryA
0x40113d A3 0C 10 40 00 mov [0x40100c], eax
0x401142 68 33 10 40 00 push 0x401033 ; ShellExecuteA
0x401147 FF 35 0C 10 40 00 push [0x40100c]
0x40114d E8 79 01 00 00 call 0x4012cb
0x401152 A3 10 10 40 00 mov [0x401010], eax

Stores the address
into ptr [0x401004]

Loads LoadLibrary
from the PEB

Calls the new ptr

Header Imports
"ExitProcess"
"GetLastError"
"GetLocalTime"
"GetModuleHandleA"

Dynamic Imports
"LoadLibraryA"
"VirtualProtect"
"ShellExecuteA"

TEB & PEB
 #[derive(Serialize, Deserialize)]

 struct ThreadInformationBlock32

 {

 // reference: https://en.wikipedia.org/wiki/Win32_Thread_Information_Block

 seh_frame: u32, //0x00

 stack_base: u32, //0x04

 stack_limit: u32, //0x08

 subsystem_tib: u32, //0x0C

 fiber_data: u32, //0x10

 arbitrary_data: u32, //0x14

 self_addr: u32, //0x18

 //End of NT subsystem independent part

 environment_ptr: u32, //0x1C

 process_id: u32, //0x20

 thread_id: u32, //0x24

 active_rpc_handle: u32, //0x28

 tls_addr: u32, //0x2C

 peb_addr: u32, //0x30

 last_error: u32, //0x34

 critical_section_count: u32, //0x38

 csr_client_thread: u32, //0x3C

 win32_thread_info: u32, //0x40

 win32_client_info: [u32; 31], //0x44

 ...

let teb_binary: Vec<u8> =
serialize(&teb_struct).unwrap();

In Rust, you can serialize structs into

vectors of bytes. This way you can allow

the assembly emulation to access them

natively while also managing the access.

PEB

peb_ldr_data

Entry 0: NTDLL

Entry 1: Kernel32

Entry N

Code vs. Data

● padding after a non-returning call

● calls misidentified as non-returning

● repetitive instruction sequences

● missed computed jump targets

● false computed jump targets

● missed opcode prefixes

● code following unconditional branches

● code following returns

● code following conditional branches

0x14000286a 39 05 C0 27 00 00 cmp [rip+0x27c0], eax
0x140002870 0F 95 C0 setne al
0x140002873 C3 ret ; FUNC 0x140002868 END
0x140002878 CC CC CC CC CC CC CC CC db 0xcccccccccccccccc
0x140002880 FF 25 A2 08 00 00 jmp [rip+0x8a2]

0x40116c 68 B0 12 40 00 push 0x4012b0 ; VB5!
0x401171 E8 F0 FF FF FF call 0x401166 ; FUNC 0x40116c END
0x401178 00 00 00 00 db 0x0
0x40117c 30 00 00 00 db 0x30
0x401180 40 00 00 00 db 0x40
0x401184 00 00 00 00 db 0x0

Padding after a non-returning call

Padding after returns

Handling Branches & Calls

● Branches and calls have 2 directions

○ Left & Right

● In light emulation mode, both the left and

right directions are followed

● Each direction is placed onto a queue with

it’s own copy of the state.

● Any assembly not traversed will not be

analyzed.

● All function calls are tracked for local and

import table mapping.

Queue

State

Jump/
Call/
Branch

StateLEFT

RIGHT

Back

Front

Handling Looping

● Infinite loops are hard to avoid

● Built a way to configure the maximum

amount of loops a one can take

○ Forward

○ Backward

○ Standard Loop

● The state contains the looping information

● Once the maximum is reached, it will

disable the loop

"loop_default_case": 4000,
...

Configurable in xori.json

Signature Analysis

● We needed a way to add signatures fast

● When bytes are analyzed as data, you can

apply signatures (i.e Function Headers)

● Importing FLIRT Signatures

Signature{
 name: "_standard_func_header",
 pattern: &[
 r"\x55\x8B\xEC", //push ebp, mov ebp,esp
 r"\x55\x89\xE5", //push ebp, mov ebp,esp
],
}

<leading bytes> <CRC16 len> <CRC16> <total length> <public name(s)> <referenced name(s)>

558BEC56FC8B750C8B4E0833CEE8........6A0056FF7614FF760C6A00FF7510 07
5FB2 0031 :0000 __CatchGuardHandler ^000E @__security_check_cookie@4
^0027 ___InternalCxxFrameHandler

558BEC8B4D0C568B7508890EE8........8B4824894E04E8........8970248B 04
7D88 0024 :0000 __CreateFrameInfo ^000D ___vcrt_getptd

 Automation for Bulk Analysis
● On the Ember Test set of 1000 files, Xori processes a sample in 1.25 seconds. With 8 cores, 1000 files takes about 20 min

● Creates *valid* JSON output of PE features, control flow graph, functions from binary files allowing bulk data analysis:

clustering, outlier detection and visualization.

● You can then easily throw Xori output into a database, document store or do a little data science at the command line

$ jq '.import_table?|map(.import_address_list)?|map(.[].func_name)?|.[]' *header.json |sort | uniq -c

|sort -nr|grep -i crypt

 32 "CryptReleaseContext"

 23 "CryptGenRandom"

 19 "CryptAcquireContextA"

 12 "CryptAcquireContextW"

 7 "CryptHashData"

 7 "CryptGetHashParam"

 7 "CryptDestroyHash"

 ...

Examples

Cd ./xori

Cargo build --release

./target/release/xori -f wanacry.exe

Simplest Way to Run Xori

extern crate xori;
use std::fmt::Write;
use xori::disasm::*;
use xori::arch::x86::archx86::X86Detail;

fn main()
{
 let xi = Xori { arch: Arch::ArchX86, mode: Mode::Mode32 };
 let start_address = 0x1000;
 let binary32 = b"\xe9\x1e\x00\x00\x00\xb8\x04\
 \x00\x00\x00\xbb\x01\x00\x00\x00\x59\xba\x0f\
 \x00\x00\x00\xcd\x80\xb8\x01\x00\x00\x00\xbb\
 \x00\x00\x00\x00\xcd\x80\xe8\xdd\xff\xff\xff\
 \x48\x65\x6c\x6c\x6f\x2c\x20\x57\x6f\x72\x6c\
 \x64\x21\x0d\x0a";

 let mut vec: Vec<Instruction<X86Detail>> = Vec::new();
 xi.disasm(binary32, binary32.len(),
 start_address, start_address, 0, &mut vec);
 if vec.len() > 0
 {
 //Display values
 for instr in vec.iter_mut()
 {
 let addr: String = format!("0x{:x}", instr.address);
 println!("{:16} {:20} {} {}", addr,
 hex_array(&instr.bytes, instr.size),
 instr.mnemonic, instr.op_str);
 }
 }
}

Basic Disassembler

extern crate xori;
extern crate serde_json;
use serde_json::Value;
use std::path::Path;
use xori::analysis::analyze::analyze;
use xori::disasm::*;

fn main()
{
 let mut binary32 = b"\xe9\x1e\x00\x00\x00\xb8\x04\
 \x00\x00\x00\xbb\x01\x00\x00\x00\x59\xba\x0f\
 \x00\x00\x00\xcd\x80\xb8\x01\x00\x00\x00\xbb\
 \x00\x00\x00\x00\xcd\x80\xe8\xdd\xff\xff\xff\
 \x48\x65\x6c\x6c\x6f\x2c\x20\x57\x6f\x72\x6c\
 \x64\x21\x0d\x0a".to_vec();

 let mut config_map: Option<Value> = None;
 if Path::new("xori.json").exists()
 {
 config_map = read_config(&Path::new("xori.json"));
 }
 match analyze(&Arch::ArchX86, &mut binary32, &config_map)
 {
 Some(analysis)=>{
 if !analysis.disasm.is_empty(){
 println!("{}", analysis.disasm);
 }
 },
 None=>{},
 }
}

Binary File Disassembler

WanaCry Ransomware
Xori IDA Pro

WanaCry Ransomware
Xori Radare2

Demo

github.com/endgameinc/xori

@malwareunicorn
@rseymour

