
 
 
 

Back To The Future: A Radical Insecure Design of 
KVM on ARM 

Abstract 
 
In ARM, there are certain instructions that generate exceptions. Such instructions are typically 
executed to request a service from the software that runs at a higher privilege level. From OS 
kernel (EL1), the software can call into hypervisor (EL2) with the HVC instruction.  
 The KVM Hypervisor is a part of the Linux kernel, and it is enabled on all the supported 
ARM system by default.  In this architecture, KVM is implemented as split-mode and runs 
across differently privileged CPU modes to execute code.  This paper discusses the design, along 
with a vulnerability in the way Linux kernel initializes the KVM Hypervisor. An attacker having 
access to host EL1 can execute code in EL2. This vulnerability can be exploited by an attacker to 
install a hypervisor rootkit on ARM systems.  
 

Introduction 
 
In ARMv8-A, a program executes in one of the four Exception levels. Exception levels 
determine the level of execution privilege. Execution at ELn corresponds to privilege PLn. 
Larger value of n mean more privileges. ARMv8-A also provides hardware support for 
virtualization. The standalone hypervisor runs in EL2 with more privilege than OS kernel running 
in EL1. The KVM hypervisor is an extension of Linux kernel and is automatically available on 
devices that are running a recent version of the Linux kernel. Running entire Linux kernel in EL2 
has its own problems, so KVM is implemented as split-mode and runs across differently privileged 
CPU modes. This way, it can take advantage of the functionality offered by each CPU mode. It is 
divided into two components, the Lowvisor that runs in EL2, and the Highvisor, which runs in 
EL1.  The Lowvisor is designed to take advantage of the hardware virtualization support available 
in EL2. It provides some key functions like setting up the correct execution context by appropriate 
configuration of the hardware, and enforces protection and isolation between different execution 
contexts. The Highvisor runs in kernel mode as part of the host Linux kernel. If the system supports 
virtualization, Linux starts to boot in EL2 and then installs a hypervisor stub that allows Linux 
Kernel to further initialize and install KVM Hypervisor. There is a vulnerability in the way Linux 
kernel initializes the KVM Hypervisor. An attacker having access to host EL1 can exploit this it 
to execute code in EL2. This paper specifically discusses ARM64v8-A architecture.  



 

 

Background 
 
Arm privilege layer and exception vector table  

In ARMv8-A, a program executes in one of the four Exception levels. Exception levels 
determine the level of execution privilege. Following is a typical example of what software 
runs at each Exception level: 

EL0    Normal user applications. 

EL1   Operating system kernel typically described as privileged. 

EL2.  Hypervisor. 

EL3   Low-level firmware, including the Secure Monitor 
 

 
  
 
Each exception level has its own exception vector table, that is, there is one for each of EL3, EL2 
and EL1. When an exception occurs, the processor must execute handler code that corresponds 
to the exception. The location in memory where a handler is stored is called the exception vector. 
In the ARM architecture, exception vectors are stored in a table, called the exception vector 
table. Vectors for individual exceptions are located at fixed offsets from beginning of the table. 
The virtual address of each table base is set by the Vector Based Address Registers, namely 
VBAR_EL3, VBAR_EL2 and VBAR_EL1. 
 



 
  
 
The base address is given by VBAR_ELn and then each entry has a defined offset from this base 
address. Each table has 16 entries, with each entry being 128 bytes (32 instructions) in size. The 
table effectively consists of 4 sets of 4 entries. Which entry is used depends upon a number of 
factors: 

• The type of exception (SError, FIQ, IRQ or Synchronous) 
• If the exception is being taken at the same Exception level, the Stack Pointer to be used 

(SP0 or SPx) 
• If the exception is being taken at a lower Exception level, the execution state of the next 

lower level (AArch64 or AArch32)  
 
Arm Virtual Extension 
 Most mainstream operating systems are built on the assumption that a system has a single 
privileged OS running several unprivileged applications. ARM virtualization, however, enables 
more than one OS to co-exist and operate on the same system. Implementing these virtual cores 
requires both, dedicated hardware extensions (to accelerate switching between virtual machines), 
and hypervisor software. A  new mode, EL2, is introduced to support virtualization in the non-
secure world. El2 is more privileged than user and kernel modes. Software running in EL2 can 
configure the hardware to trap from kernel mode into EL2 on various sensitive instructions and 
hardware interrupts. To run VMs, the hypervisor must at least partially reside in EL2.  ARM 
designed the virtualization support around El2 as they envisioned a standalone hypervisor 
underneath a more complex rich OS. 
 Hypervisors can be broadly classified as Type1 and Type 2 hypervisor. Type 1 are the 
bare-metal hypervisor and each Virtual Machine (VM) contains a guest OS. Type 2 hypervisors 
are extensions of the host OS with each subsequent guest OS contained in a separate VM. Unlike 
Type 1 hypervisors, Type 2 do not consider hosts as VMs. There are two major Open Source 



hypervisors, KVM, and Xen. The KVM hypervisor, discussed in this paper, is an extension of 
Linux and is considered as Type 2 hypervisor.  

KVM Design  
The KVM hypervisor is an extension of Linux. Although standalone bare metal hypervisor 
design approach has the potential for better performance and a smaller Trusted Computing Base 
(TCB), due to diversity in ARM hardware, as compared to x86, this approach is less practical on 
ARM. Linux, however, is supported across almost all ARM platforms and by integrating KVM 
with Linux, KVM is automatically available on all devices running a recent version of the Linux 
kernel. Integration of KVM/ARM in Linux solved the portability and hardware support issues. 
However, ARM hardware virtualization extensions were designed to support a standalone 
hypervisor, which is completely separate from any standard kernel. Simply running a hypervisor 
entirely in EL2 mode is attractive since it is the most privileged level. But, since KVM leverages 
existing kernel infrastructure such as the scheduler, running KVM in EL2 implies running the 
entire Linux kernel in EL2. This is considered problematic by the KVM team for various 
reasons.  
 As a solution for ARMv8.0, KVM introduced split-mode virtualization, a new approach 
to hypervisor design that splits the core hypervisor so that it runs across different privileged CPU 
modes and takes advantage of the specific benefits and functionality offered by each CPU mode. 
KVM uses split-mode virtualization to leverage the ARM hardware virtualization support 
enabled in EL2, while at the same time, leveraging existing Linux kernel services running in 
kernel mode. split-mode virtualization allows KVM to be integrated with the Linux kernel 
without intrusive modifications to the existing code base.  
This is done by splitting the hypervisor into two components, the Lowvisor, and the Highvisor, 
as shown in picture below. The Lowvisor is designed to take advantage of the hardware 
virtualization support available in El2, It provides some key functions like setting up the correct 
execution context by appropriate configuration of the hardware, and enforces protection and 
isolation between different execution contexts. The Lowvisor performs only the minimal amount 
of processing required and defers the bulk of the work to the Highvisor, after a world switch to 
the Highvisor is complete. The Highvisor runs in kernel mode as part of the host Linux kernel. It 
can therefore directly leverage existing Linux functionality such as the scheduler, and can also 
make use of standard kernel software data structures and mechanisms to implement its 
functionality (such as locking mechanisms and memory allocation functions). This makes 
higher-level functionality easier to implement in the Highvisor. 
 

 



Note: In ARMv8.1 extension with Virtualization Host Extension, it is possible to run the whole 
kernel in EL2. 
 
Linux Boot and KVM 
 In ARM architecture EL2 is more privileged than the kernel modes (EL1) and there is no 
architecturally defined ABI for entering to EL2 from less privileged modes. So, in order to 
support KVM on Linux, Linux starts to boot in El2.  Once the kernel is booted in EL2, it installs 
a stub handler that allows other subsystems like KVM to take control of EL2 mode. After 
installing the stub, the Linux kernel switches back to EL1 for further boot process. 
 For example, ARM Trusted Firmware which provides a reference implementation of 
secure world software for ARMv8-A passes controls in EL2 to the normal world software.  
Following is the code snippet from ARM Trusted Firmware for Resberry Pi 3.  
The SPSR register is set to transfer control in EL2. 
 

 
 
For ARM architecture, as soon as Linux boots, it checks the current CPU mode.  In case the 
current mode is EL2, Linux configures EL2 hardware and then installs a hypervisors stub that 
allows other subsystems like KVM to take control of EL2 mode.  
Following is the code snippet from the file kernel/arch/arm64/kernel/head.s.  
 



 
 
If the CPU is in El2, the control is transferred to install_el2_stub which installs the Hypervisor 
stub. Following is the code snippet from kernel/arch/arm64/kernel/head.s that installs the stub.  

 
 
The above code snippet updates the register VBAR_EL2 so that it points to __hyp_stub_vectors 
vector table. The hyp stub __hyp_stub_vectors is defined in the file hyp_stub.s as follow  
 



 
 
Once VBAR_EL2 is updated with the address of vector table __hyp_stub_vectors, the vector table 
__hyp_stub_vectors is installed as an exception vector table for EL2. The function el1_sync, 
defined at offset 0x400 of vector table, is registered as the handler for Synchronous exception 
from 64-bit EL1 kernel.  Function el1_sync will be invoked as an exception handler if HVC 
instruction is executed by 64bit kernel.  
 
Following is the code snippet for el1_sync function, defined in the file hyp_stub.S  
 



 
 
 
el1_sync expects HVC_SET_VECTORS, HVC_SOFT_RESTART and HVC_RESET_VECTORS 
command from EL1. The register value of X0 determines which command needs to be processed. 
In case the register x0 is HVC_SET_VECTORS, the VBAR_EL2 register is reset to the new value 
passed with register x1. 

The Linux kernel exposes a function __hyp_set_vectors, defined in file “/kernel/hyp-
stub.S”, to install EL2_VBAR table. The Linux kernel code running in EL1, which initializes 
KVM, uses this interface to install KVM Hypervisor. The function __hyp_set_vectors is defined 
as below. 

 

 
) 
 
Once the EL2 hardware is configured and the stub vector table is installed, Linux kernel switches 
back to EL1 to perform normal Linux booting. 
 
KVM Initialization 
The Linux kernel begins initialization of KVM by invoking “kvm_init” function defined in the 
file linux\kvm\kvm_main.c.  This function is called by “arm_init” function, which is defined in 
arm.c. 
The “kvm_init” function first checks if the CPU is booted in the EL2 mode. In case the CPU is 
not booted in El2 mode, it returns the following error and no further KVM initialization is done. 



 

 
  
 
If CPU is booted in EL2, the function “cpu_init_hyp_mode” is invoked. This function initializes 
and installs __KVM_Initilization_vector as a new vector table for EL2.The __hyp_set_vectors 
interface is used to install __KVM_Initilization_vector. 
 
 
__KVM_Initialization_vector is defined as follow in the file hyp-init.s 
 

 
 
After __KVM_Initialization_vector is installed as an exception vector table for EL2, the function 
__do_hyp_init, defined at offset 0x400, is registered as handler for synchronous exception from 
64-bit EL1 kernel. 
 Further, after installing __KVM_Initialization_vector, the cpu_init_hyp_mode function 
obtains the pointer for hypervisors page table, hypervisor stack, and the actual hypervisor vector 
table. Post this, the function __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr) is 
invoked. This function makes HVC call to invoke the exception handler function __do_hyp_init 
and passes the page table, stack, and actual hypervisor vector as parameters.  
 
Following is the implementation of cpu_init_hyp_mode function 



 
 

 
__do_hyp_init function is defined in the file Arch/arm64/kvm/hyp-init.s. The implementation is 
as follows : 

 
 
The function __do_hyp_init enables MMU for hypervisor and sets EL2 stack pointer. It then 
installs actual KVM Hypervisors vector table __kvm_hyp_vector. This vector table is defined in 
the file “kvm/hyp/hyp-entry.s” as follow  
 



 
 
Once the actual Hypervisor vector table is installed as an exception vector table for EL2, the 
function el1_sync, defined at offset 0x400 in __kvm_hyp_vector, is registered as a handler for 
synchronous exception originating from 64-bit EL1 kernel.  
Following is the code snippet for el1_sync, defined in the file hyp-entry.s. It invokes the function 
“__kvm_handle_stub_hvc” if the value of x0 register is less than HVC_STUB_HCALL_NR.  
 



 
 
 
Following is the code snippet for function “__kvm_handle_stub_hvc” defined in hyp-init.s. If the 
value in x0  register is equal to #HVC_RESET_VECTORS, the function resets EL2_VBAR back 
to    __hyp_stub_vectors.  This implies that once the actual hypervisor vector table is installed, it 
provides an interface to reset VBAR_EL2 back to the initial hypervisor stub.  In addition, as 
discussed earlier, the hypervisor stub provides an interface to update VBAR_EL2 from EL1.  So, 
combining these two commands provides an opportunity for an attacker to execute code in EL2 
from EL1. An attacker can exploit this vulnerability and install a hypervisor rootkit that runs 
with more privileges than that of host kernel, or any security software running in the host kernel.  



 

 
 
 
 
 
 



Exploit  
Assuming that an attacker has the execution privilege on host kernel EL1. In order to execute 
code in EL2, the attacker needs to do the following: 
 

1. Create HVC_RESET_VECTORS exception request. This HVC call will invoke 
__kvm_handle_stub_hvc in EL2, which in turn, will disable Hypervisor MMU and reset 
the VBAR_EL2 to __hyp_stub_vectors.  

2. The attacker then allocates a physical continuous memory in the kernel. Here, attacker 
needs to allocate physical continuous memory because MMU of EL2 is disabled. 

3. Attacker embeds the shellcode to be executed in El2 at an offset 0x400 in allocated 
memory block. The offset 0x400 is set because exception handler for HVC originating 
from 64bit kernel is at this offset. 

4. The attacker then creates HVC_SET_VECTORS HVC call and passes that physical 
address of the memory buffer allocated in step 2. 

5. HVC_SET_VECTORS request will reset the attacker allocated buffer as new exception 
vector table for EL2.  

6. Finally, the attacker can invoke HVC call, which will execute the attacker’s shellcode in 
EL2. 

 
Note: Given the current design flaw in KVM, this is just one of many ways that might be used to 
execute code in EL2 form EL1. 

Conclusion 
This security issue was reported to Red Hat Security, who then escalated this issue to KVM 
team. It can be concluded from the KVM team’s response that their threat model does not 
consider this as a security issue, and they don’t care about this vulnerability that KVM adds into 
the privilege separation boundary. Their assumption may work in some case, but certainly will 
not work in all case. The attacker can use this design as a booster once they manage to get into 
the host kernel.  They can gain more privileges and migrate to EL2. This provides attackers the 
following advantages:  

• Attackers can run their code unreferenced by any code running in Linux EL1.  
• Can configure EL2 to get code execution from various different places.  
• Attackers’ code will run with higher privileges than the security software running in host 

kernel, and thus, will have an upper hand. 
• Attackers can use it as a generic way to bypass security mechanisms implemented (like 

Linux Kernel Runtime Guard) in the kernel by escaping to EL2. 
• Attackers can use this to target security monitoring software running in EL2. 
• This design flaw gives attackers opportunity for Blue Pill for KVM on ARM. 

Mitigation 
For robust and secure design, the hypervisor initialization should be done first, and once the 
hypervisors initialization is complete, the controls should be switched back to EL1 to start kernel 
initialization. This requires a comprehensive design change in KVM. As an interim security 
improvement, make sure that Linux starts to boot in EL1 and this will disable KVM in your 
system. 



 
 
 
 
 
 
 
 
 
 
 
 
 

References: 
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf 
https://developer.arm.com/products/architecture/a-profile/docs/100942/latest/hypervisor-
software 
https://dl.acm.org/citation.cfm?id=2541946 
http://www.cs.columbia.edu/~cdall/pubs/atc17-dall.pdf 
http://www.cs.columbia.edu/~cdall/pubs/sosp2017-neve.pdf 
https://lwn.net/Articles/557132/ 
 


