
THE PARIS256 ATTACK
Or, Squeezing a Key Through a Carry Bit.

Sean Devlin, Filippo Valsorda

Introduction
We present an adaptive key recovery attack exploiting a small carry propa-

gation bug in the Go standard library implementation of the NIST P-256 el-

liptic curve, reported to the Go project as issue 20040.

Following our attack, the vulnerability was assigned CVE-2017-8932, and

caused the release of Go 1.7.6 and 1.8.2.

The a�ected code
The Go standard library includes an assembly implementation of the NIST

P-256 elliptic curve for the x86-64 architecture. One of the fundamental

building blocks of such an implementation is constant time arithmetic

modulo (the prime number).

Here's the original p256SubInternal , the function computing

 in constant time. Some registry aliases were renamed

for clarity.

p 2256 − 2224 + 2192 + 296 − 1

a = a − b mod p

https://github.com/golang/go/issues/20040
https://github.com/golang/go/blob/go1.8.1/src/crypto/elliptic/p256_asm_amd64.s

TEXT p256SubInternal(SB),NOSPLIT,$0
 XORQ mul0, mul0

 SUBQ b0, a0
 SBBQ b1, a1
 SBBQ b2, a2
 SBBQ b3, a3
 SBBQ $0, mul0

 MOVQ a0, t0
 MOVQ a1, t1
 MOVQ a2, t2
 MOVQ a3, t3

 ADDQ $-1, a0
 ADCQ p256const0<>(SB), a1
 ADCQ $0, a2
 ADCQ p256const1<>(SB), a3

 ADCQ $0, mul0

 CMOVQNE t0, a0
 CMOVQNE t1, a1
 CMOVQNE t2, a2
 CMOVQNE t3, a3

 RET

This is Plan9 assembly, where data "�ows" from left to right. So, for exam-

ple, SUBQ b0, a0 means .

Let's break it down. Notice, �rst of all, how the numbers we are operating

on are 256-bit wide, but our machine registries are only 64-bit. This is why

each number is broken into 4 registries. The inputs are a0–a3 and b0–b3,

and the result is stored in a0–a3.

The �rst series of operations executes the subtraction

itself.

SUBQ subtracts the least-signi�cant register of the 4, and sets the car-

ry/borrow �ag. Each subsequent SBBQ instruction (subtraction with

a0 = a0 − b0

a = a − b

https://en.wikipedia.org/wiki/Carry_flag

borrow) subtracts two registries accounting for the borrow from the

previous instruction. The last SBBQ stores the �nal borrow in mul0 .

The MOVQ instructions copy a0–a3 to t0–t3.

If a was bigger than b, this is the �nal result, so it's copied for later.

The ADDQ / ADCQ sequence executes .

If instead was smaller than , the result would have wrapped around

at (4 64-bit registries) instead of at . Adding corrects the re-

sult, as without wrapping around.

Finally, the ADCQ and CMOVQNE instructions select in constant time be-

tween the two results above and .

ADCQ sets the zero �ag based on mul0 , the borrow result of the

operation, and CMOVQNE copies t0–t3 back to a0–a3 based on the zero

�ag. The CMOV instructions execute a copy or a no-op based on a con-

dition in constant time, allowing us not to leak with timing whether

was smaller or bigger than .

The bug
The issue is that ADCQ $0, mul0 was simply meant to set the zero �ag

based on mul0 , but ADCQ adds the carry bit from the previous operation

as well, which is completely unrelated. This inverts the condition looked at

by the CMOV . The implementation o�sets that by swapping CMOVQNE for

CMOVQEQ , inverting the check as well.

Here's the patch:

a = a + p

a b

2256 ⋅ p p

a − b + p = a − b mod p

a − b a − b + p

a − b

a

b

https://en.wikipedia.org/wiki/Zero_flag

 TEXT p256SubInternal(SB),NOSPLIT,$0
 XORQ mul0, mul0
 SUBQ b0, a0
 SBBQ b1, a1
 SBBQ b2, a2
 SBBQ b3, a3
 SBBQ $0, mul0

 MOVQ a0, t0
 MOVQ a1, t1
 MOVQ a2, t2
 MOVQ a3, t3

 ADDQ $-1, a0
 ADCQ p256const0<>(SB), a1
 ADCQ $0, a2
 ADCQ p256const1<>(SB), a3

- ADCQ $0, mul0
-
- CMOVQNE t0, a0
- CMOVQNE t1, a1
- CMOVQNE t2, a2
- CMOVQNE t3, a3
+ ANDQ $1, mul0
+
+ CMOVQEQ t0, a0
+ CMOVQEQ t1, a1
+ CMOVQEQ t2, a2
+ CMOVQEQ t3, a3

 RET

Two bugs compensate each other, and all is well. Almost. The carry bit er-

roneously included is the one generated by adding to . is so close

to that the addition almost always over�ows, setting the carry bit

(which is what we want it to do, to compensate the under�ow in). If,

however, is less than , the carry bit won't be set, and the

CMUL will select the wrong result.

Summing up, if a is within , p256SubInternal returns

 instead of . This happens with a probability of

 between random and values.

p a − b p

2256

a − b

a − b 2256 − p

[b, b + 2256 − p)
a − b + p a − b

≅2− 322256 − p

p
a b

It's a carry propagation bug in that it's caused by a carry improperly propa-

gating into the next unrelated operation.

The adaptive bug attack
So, how do we turn a bug in an internal subroutine causing a wrong result

once in times into a key recovery attack?

First, we need to understand how the bug a�ects higher-level operations.

p256SubInternal is used by p256PointAddAsm and p256PointDoubleAsm ,

both used in ellipic.P256().ScalarMult (but, interestingly, not in el-

lipic.P256().BaseScalarMult).

ScalarMult(Qx, Qy *big.Int, k []byte) (x, y *big.Int) returns the

point where is a number in big-endian form. It implements

a variant (see below) of a double-and-add algorithm, meaning doublings (

) and additions () are performed starting from the zero point in an

order dictated by the bit patterns of : a double for each bit, an add and

a double for each .

The success of the attack relies on the ability to generate points that break

for speci�c double-and-add sequences. For example, a point that trig-

gers the bug when () is calculated,

but not when () is.

Given such a bug, we can construct an oracle from protocols that let the

attacker submit arbitrary points Q, and observe the result of

ScalarMult(Qx, Qy, k) with a secret and �xed . For example, any imple-

mentation of ephemeral-static Di�e-Hellman (ES-ECDH) lets the attacker

submit as their ephemeral share, and performs scalar multiplication by

, the static key. As long as the attacker knows the dlog of , they can

complete the exchange and test if the protocol completes successfully; if

not, the bug has been triggered.

232

k ⋅ (Qx, Qy) k

⋅ 2 +Q

k 0

1

Q

Z + Q ⋅ 2 ⋅ 2 + Q ⋅ 2 ⋅ 2 k = 1010...

Z + Q ⋅ 2 ⋅ 2 + Q ⋅ 2 + Q ⋅ 2 k = 1011...

k

Q

k Q

https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Double-and-add

A bit of the key is then leaked by submitting two points that break for two

alternative double-and-add sequences, each corresponding to a di�erent

bit at a certain position, and checking which one makes the oracle fail.

The rest of the attack progresses adaptively. Once the bit at position is

discovered, a pair of points breaking for each of the values of the bit at po-

sition is generated and submitted. (As an optimization, one point is

su�cient for each round, by exclusion.)

This amounts to a full adaptive key recovery attack against ES-ECDH and

similar protocol, where the implementation su�ers from the bug above.

Implementation details
The Go x86-64 assembly implementation however is not a plain double-

and-add algorithm, but uses a windowing method and Booth encoding.

This was based on previous work by Gueron and Krasnov in OpenSSL.

The scalar is split into 5-bit wide windows, Booth encoded. We call each

of the resulting sign and value tuples "limbs". For each limb a value be-

tween |1Q 16Q| is selected from a precomputation table and added

to or subtracted from the running product. If the limb value is zero the op-

eration is skipped in constant time. The product is then doubled 5 times.

Our attack had then to target one limb at a time instead of one bit at a

time, using points that trigger the bug either during the addition or sub-

traction of the value from the precomputation table, or during the following

doubles, as long as only one speci�c table entry caused the bug to be

reached.

There are 33 possible limb values, to , so for each 5 bits of the

key we'll need on average 16 candidate points. (Some limb values restrict

the possible values of the following limb, making the search more e�cient.)

n

n + 1

k

and

−16 +16

https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Windowed_method
https://academic.oup.com/qjmam/article/4/2/236/1874893
https://eprint.iacr.org/2013/816.pdf

Fuzzing for points
To �nd points e�ciently, we repurposed the optimized implementation as

a high-speed fuzzer. p256SubInternal was instrumented to set a �ag

when the conditions for the bug are met. Given a point and the depth of

the target limb, the fuzzer:

computes the product of the known limbs normally, checking that the

bug is not triggered prematurely

performs the addition and doubles operations for each possible value

of the target limb

if only one limb value triggers the bug, �ags the point as a candidate

Points are then post-processed by comparing the outputs of the vulnera-

ble and patched codebases for each of the target limb values, to remove

the frequent false positives.

Points to be tested were generated e�ciently by starting from a random

point of known dlog (required to verify if ECDH completed successfully),

and adding at each iteration. Constant time operations were replaced by

slightly faster branches as an optimization.

This allowed us to generate targeted candidate points at a su�ciently high

speed to perform the attack in practice. See the conclusion for some

benchmarks.

Detecting the �rst limb
Obtaining the value of the �rst limb requires extra care, as the �rst limb

causes no addition operations—just a selection from the table—and we

need to take into account the operations that produce the precomputation

table itself.

G

If for example a point triggers the bug at the 5th double following the se-

lection of the value , it will also trigger the bug when and are select-

ed, because they are nothing else than followed by one or two doubles.

What we need is a set of 3 points, one that fails doubling 5 times, one

that fails at the 6th double, and one that fails at the 7th double. will only

trigger with one of them, with two, and with all three, allowing us to

distinguish between them.

The same can be done for all �rst limb values that would cause ambiguity.

The attack is complicated by the fact that the second limb might have a

zero value, in which case the entry from the table would be doubled 10

times. A di�erent set of points can be built to detect �rst limb values when

the second limb is zero, and it becomes less and less likely that more con-

secutive limbs will be zero.

What this attack can't detect is the presence of leading zero-value limbs, as

those are silently skipped by the constant time code. This case just takes

some care to detect while the attack is terminating.

Thankfully, all the points for this phase of the attack can be precomputed

once, as there are no previous limbs to adapt to.

Conclusion

A target: go-jose
The attack wouldn't be complete without a practical target. Thankfully, the

JSON Object Signing and Encryption (JOSE) speci�cation allows developers

to choose from and combine a dizzying array of cryptographic primitives

including ES-ECDH.

3 6 12

3

3

3

6 12

We tested our attack against a simple server accepting encrypted JWT to-

kens, and decrypting them with the library github.com/square/go-jose

(through no fault of its own), compiled on Go 1.8.1.

Tokens that triggered the bug would cause a di�erent error, acting as an

oracle for our adaptive attack, leading to full key recovery.

Benchmarks
We estimate that we �nd a useful candidate point every tested points.

Each limb requires on average 16 candidate points, which on 3.1GHz

Haswell platform take about 85 CPU hours.

At 52 limbs per key, the attack requires less than 5000 CPU hours, which

can be bought from cloud providers for less than $50 in preemptible

("spot") instances.

The attack requires on average a bit more than 800 oracle invocations.

Prior work
Even though we were not aware of it at the time we developed ours, we'd

like to acknowledge the extremely similar attack published by Brumley, et

al. in "Practical realisation and elimination of an ECC-related software bug

attack" (2011). While the implementation details are di�erent as they were

targeting a di�erent bug in OpenSSL from 2007, similarly considered not

exploitable, the approach matches our adaptive attack.

226

https://eprint.iacr.org/2011/633.pdf

