Squeezing a key through a carry bit

Sean Devlin Filippo Valsorda, Google

crypto/elliptic: carry bug in x86-64 P-256 #20040

(1) Closed

agl opened this issue on Apr 19 \cdot 11 comments

agl commented on Apr 19

Cloudflare reported a carry bug in the P-256 implementation that they submitted for x86-64 in 7bacfc6. I can reproduce this via random testing against BoringSSL and, after applying the patch that they provided, can no longer do so, even after ~2³¹ iterations.

This issue is not obviously exploitable, although we cannot rule out the possibility of someone managing to squeeze something through this hole. (It would be a cool paper.) Thus this should be treated as something to fix, but not something on fire, based on what we currently know.

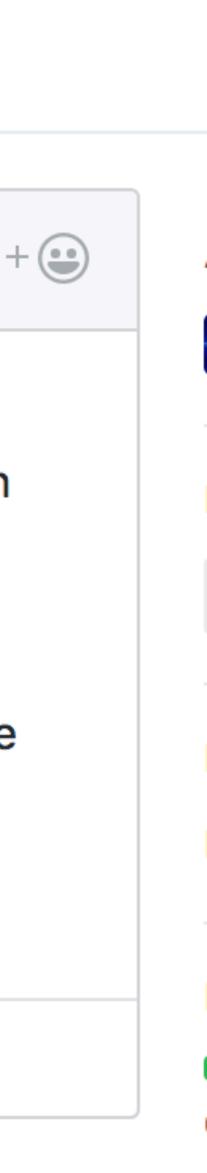
Fix will be coming in just a second.

crypto/elliptic: carry bug in x86-64 P-256 #20040

() Closed

agl opened this issue on Apr 19 \cdot 11 comments

agl commented on Apr 19


Cloudflare reported a carry bug in the P-256 implementation that they submitted for x86-64 in 7bacfc6. I can reproduce this via random testing against BoringSSL and, after applying the patch that they provided, can no longer do so, even after ~2³¹ iterations.

This issue is not obviously exploitable, although we cannot rule out the possibility of someone managing to squeeze something through this hole. (It would be a cool paper.) Thus this should be treated as something to fix, but not something on fire, based on what we currently know.

Fix will be coming in just a second.

One month later

agl commented on May 23

(This issue is CVE-2017-8932.)

golang-announce > [security] Go 1.7.6 and Go 1.8.2 are released

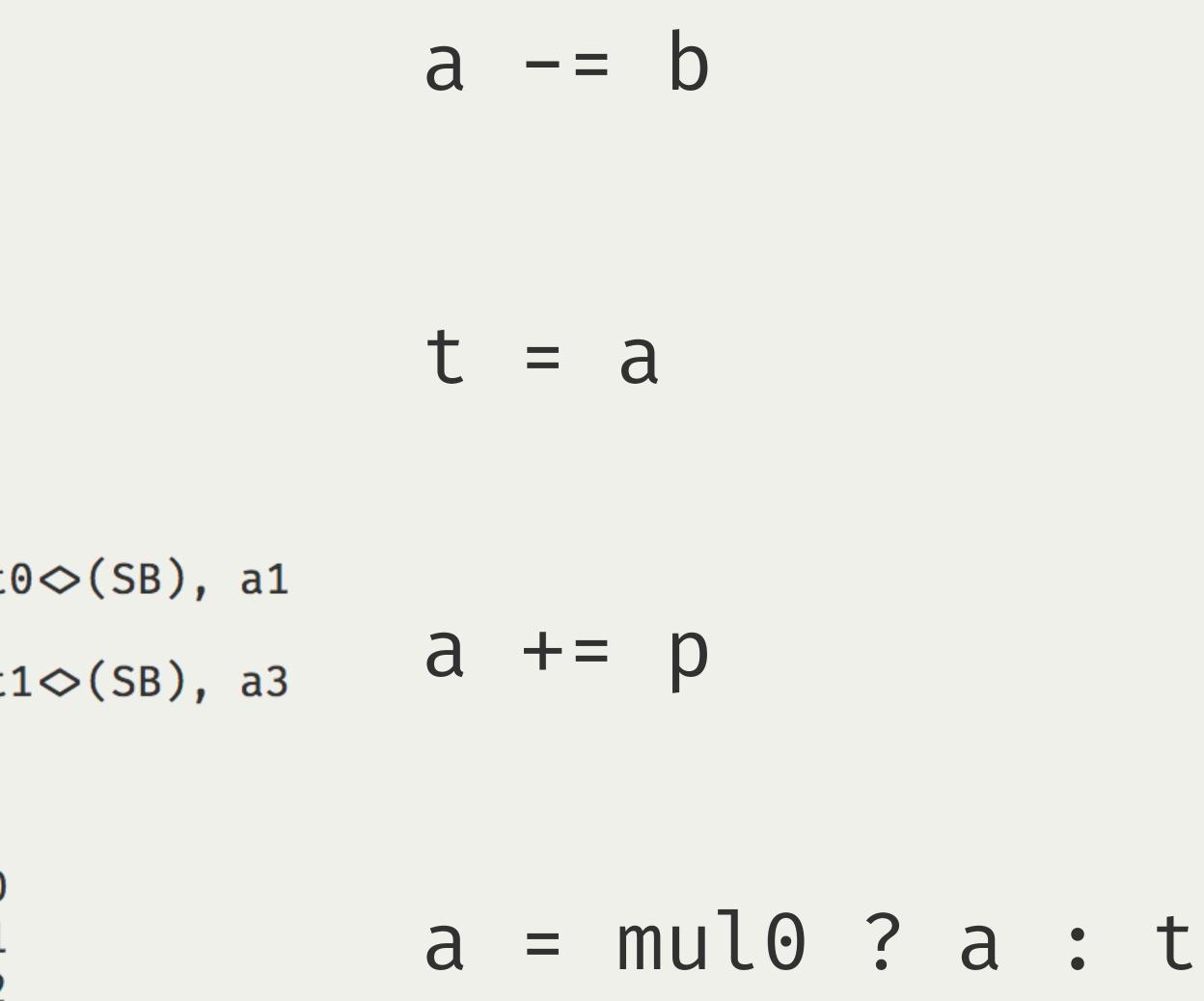
1 post by 1 author 🕤 G+

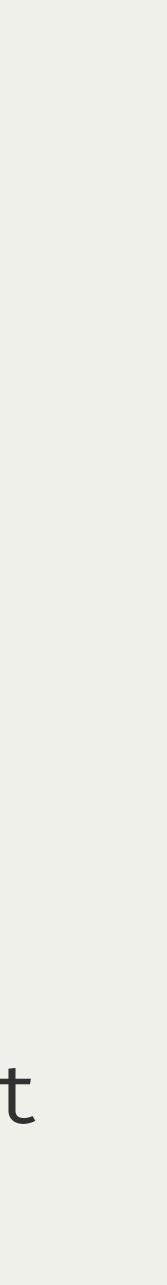
Chris Broadfoot

A security-related issue was recently reported in Go's crypto/elliptic package. To address this issue, we have just released Go 1.7.6 and Go 1.8.2.

The code a = a - bmod p

TEXT	-			
	XORQ	mul(9, n	nul
	SUBQ	b0,	a0	
	SBBQ	b1,	a1	
	SBBQ	b2,	a2	
	SBBQ	b3,	a3	
	SBBQ	\$0,	mu	0
I	MOVQ	a0,	t0	
- I	MOVQ	a1,	t1	
- I	MOVQ	a2,	t2	
I	MOVQ	a3,	t3	
	ADDQ	\$-1	, a()
	ADCQ			
	ADCQ	\$0,	a2	
	ADCQ			ist
	ADCQ	\$0,	mul	L <mark>0</mark>
(CMOVO	QNE 1	t0,	a0
(CMOVC	QNE 1	t1,	a1
(CMOVC	QNE 1	t2,	a2
(CMOVO	QNE 1	t3,	a3
	RET			

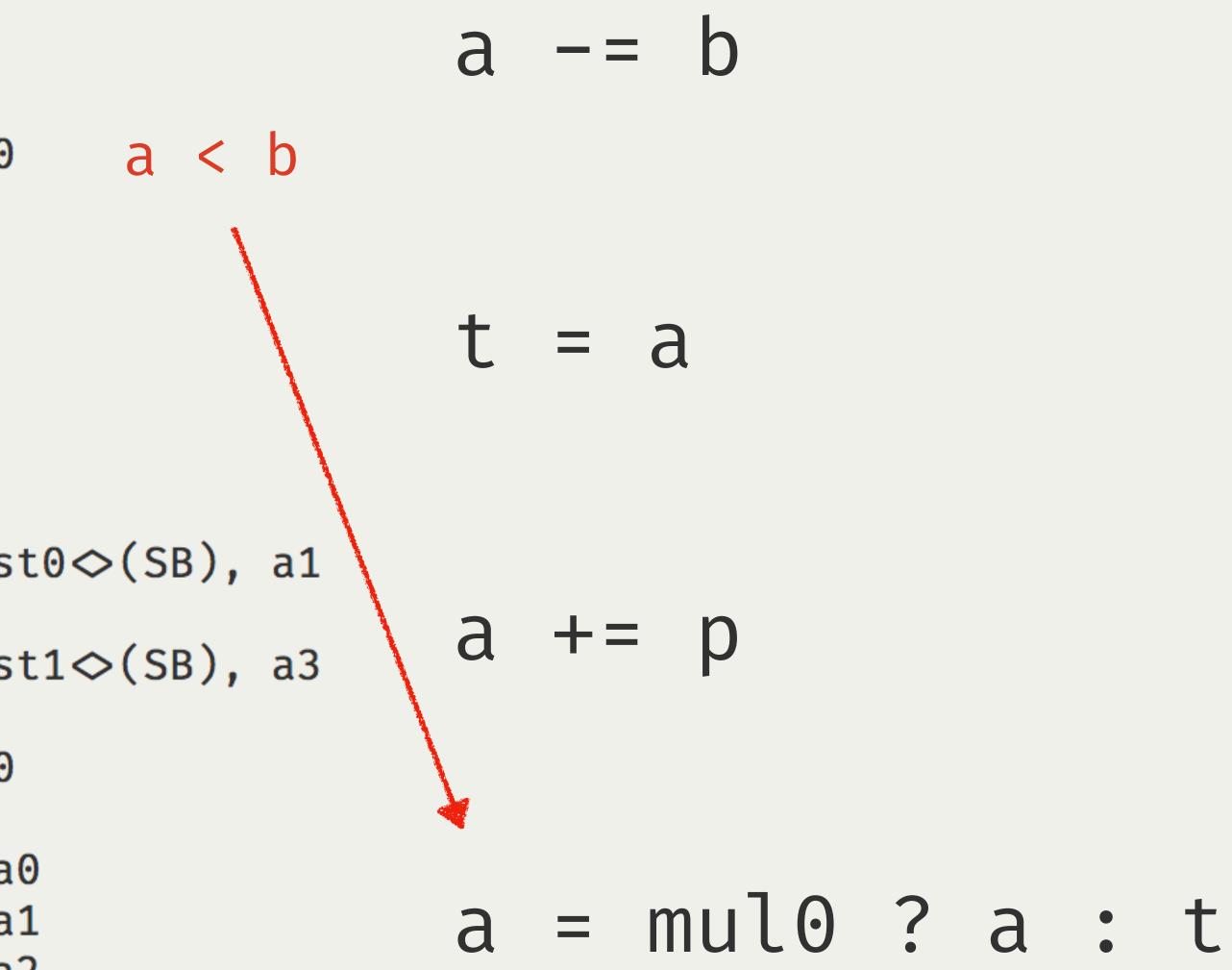

nal(SB),NOSPLIT,\$0 .0

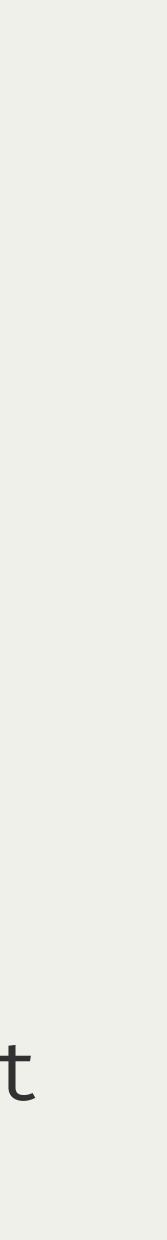

:0◇(SB), a1 :1◇(SB), a3

The code a = a - bmod p

TEXT	-			
2	XORQ	mul	9, n	nul
	SUBQ	b0,	a0	
	SBBQ	b1,	a1	
	SBBQ	b2,	a2	
	SBBQ	b3,	a3	
	SBBQ	\$0,	mul	0
1	MOVQ	a0,	t0	
1	MOVQ	a1,	t1	
1	MOVQ	a2,	t2	
I	MOVQ	a3,	t3	
	ADDQ	\$-1	, a()
	ADCQ			
	ADCQ	\$0,	a2	
	ADCQ	p250	6 <mark>co</mark> r	ist
	ADCQ	\$0 ,	mul	0
(CMOVO	NE :	t0,	a0
(CMOVC	NE 1	t1,	a1
(CMOVC	NE 1	t2,	a2
(CMOVO	QNE	t3,	a3
	RET			

nal(SB),NOSPLIT,\$0 .0

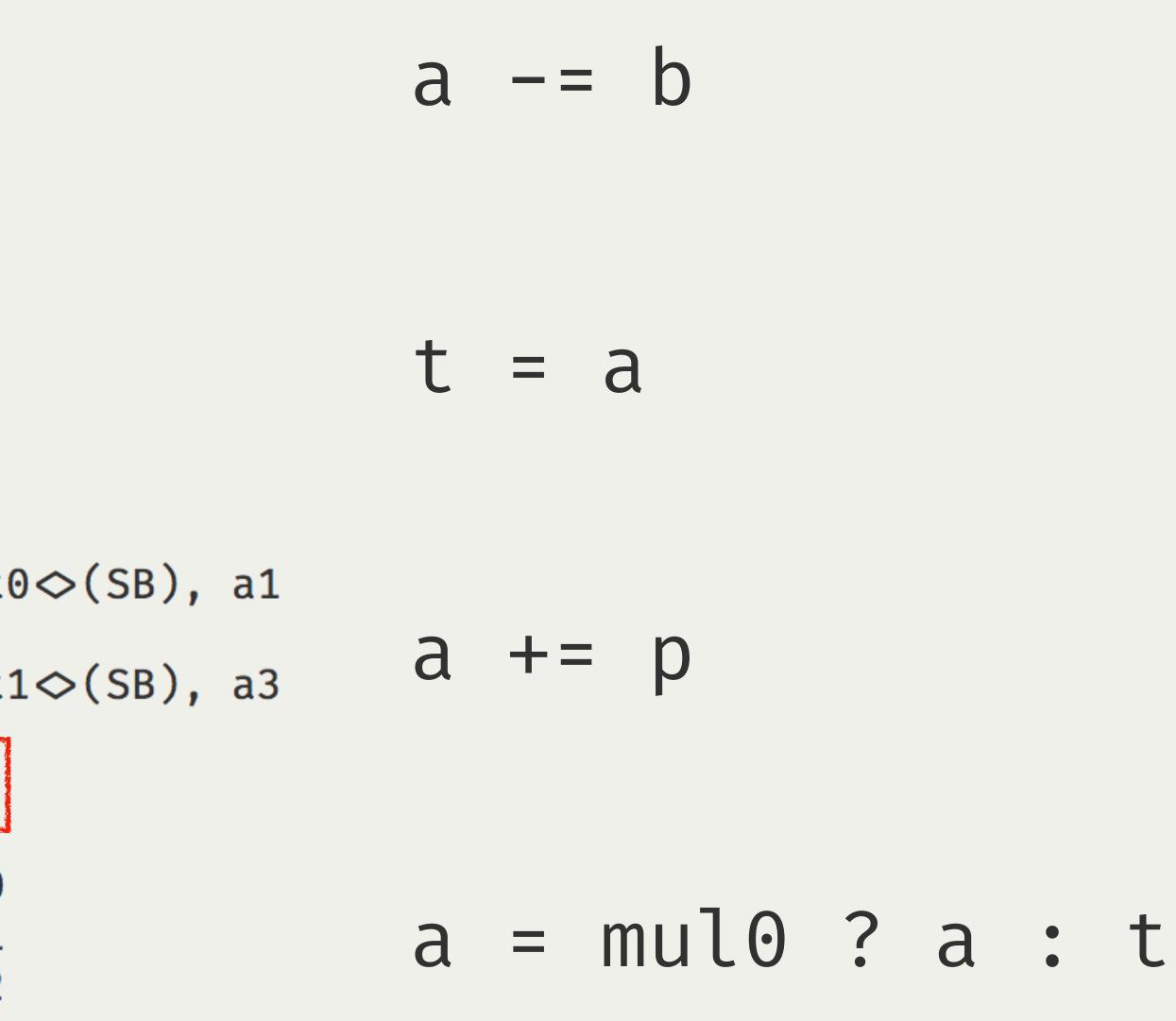


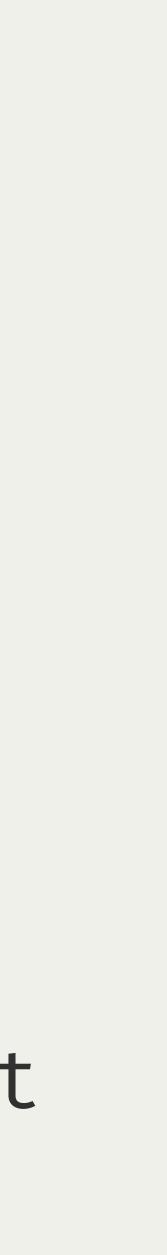


The code a = a - bmod p

TEXT	-			
2	XORQ	mul	9, n	nul
	SUBQ	b0,	a0	
	SBBQ	b1,	a1	
	SBBQ	b2,	a2	
	SBBQ	b3,	a3	
	SBBQ	\$0,	mul	0
1	MOVQ	a0,	t0	
1	MOVQ	a1,	t1	
1	MOVQ	a2,	t2	
I	MOVQ	a3,	t3	
	ADDQ	\$-1	, a()
	ADCQ			
	ADCQ	\$0,	a2	
	ADCQ	p250	6 <mark>co</mark> r	ist
	ADCQ	\$0 ,	mul	0
(CMOVO	NE :	t0,	a0
(CMOVC	NE 1	t1,	a1
(CMOVC	NE 1	t2,	a2
(CMOVO	QNE	t3,	a3
	RET			

```
nal(SB),NOSPLIT,$0
.0
```





The bug

XORQ	mul	0, r	nul(
SUBQ	b0,	a0	
SBBQ	b1,	a1	
SBBQ	b2,	a2	
SBBQ	b3,	a3	
•	-		L0
ΜΟΛΟ	20	+0	
•			
	-		
•	-		
MOVQ	d3,	13	
ADDQ	\$-1	, a(9
ADCQ	p25	6 <mark>co</mark> r	nst(
ADCQ	\$0,	a2	
ADCQ	p25	6cor	nst
ADCQ	\$0,	۳u٦	L0
CMOVO	NE ·	t0,	a0
	•		
	•		a2
	•	-	
RET			
	XORQ SUBQ SBBQ SBBQ SBBQ SBBQ SBBQ MOVQ MOVQ MOVQ MOVQ MOVQ MOVQ MOVQ ADCQ ADCQ ADCQ ADCQ ADCQ	XORQ mul SUBQ b0, SBBQ b1, SBBQ b2, SBBQ b3, SBBQ b3, SBBQ \$0, MOVQ a0, MOVQ a0, MOVQ a1, MOVQ a1, MOVQ a2, MOVQ a2, MOVQ a3, ADCQ \$0, ADCQ \$0, ADC	CMOVQNE t3,

al(SB),NOSPLIT,\$0 0

The bug

ТЕХТ	p2!	56	Su	b	Ι	n	t	e	r	na
	XOR									
	SUB					-				
	SBB	Q	b1	,		a	1			
	SBB	Q	b2	,		a	2			
	SBB	Q	b3	,		a	3			
	SBB	Q	\$0	,		m	u	l	0	
	MOV	Q	a0	,		t	0			
	MOV	Q	a1	,		t	1			
	MOV	Q	a2	,		t	2			
	MOV	Q	a3	,		t	3			
	ADD	Q	\$-	1	,		a	0		
	ADC	Q	p2	5	6	С	0	n	S	t(
	ADC	Q	\$0	,		a	2			
	ADC	Q	p2	5	6	С	0	n	S	t:
-	ADC	Q	\$ 0	,		m	u	ι	0	
_	CMO	VQ	NE		t	0	,		a	0
-	CMO	٧Q	NE		t	1	,		a	1
-	CMO	٧Q	NE		t	2	,		a	2
-	CMO	VQ	NE		t	3	,		a	3
	RET									

al(SB),NOSPLIT,\$0 0

- 0�(SB), a1
- 1�(SB), a3

- + ANDQ \$1, mul0
- + CMOVQEQ t0, a0
- + CMOVQEQ t1, a1
- + CMOVQEQ t2, a2
- + CMOVQEQ t3, a3

The bug

EXT p256SubIntern XORQ mul0, mul SUBQ b0, a0 SBBQ b1, a1 SBBQ b2, a2 SBBQ b3, a3 SBBQ \$0, mul0 MOVQ a0, t0 MOVQ a0, t0 MOVQ a1, t1 MOVQ a2, t2 MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a3										
XORQ mul0, mul SUBQ b0, a0 SBBQ b1, a1 SBBQ b2, a2 SBBQ b3, a3 SBBQ \$0, mul0 MOVQ a0, t0 MOVQ a0, t0 MOVQ a1, t1 MOVQ a2, t2 MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2	ЕХТ	p	256	Sı	Jb	I	nt	e	r	na
SBBQ b1, a1 SBBQ b2, a2 SBBQ b3, a3 SBBQ \$0, mul0 MOVQ a0, t0 MOVQ a1, t1 MOVQ a2, t2 MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ \$0, a2 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2		XO	RQ	mι	Jl	0	,	m	น่	10
SBBQ b2, a2 SBBQ b3, a3 SBBQ \$0, mul0 MOVQ a0, t0 MOVQ a1, t1 MOVQ a2, t2 MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ \$0, a2 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2		SU	BQ	b	Э,	i	a0)		
SBBQ b3, a3 SBBQ \$0, mul0 MOVQ a0, t0 MOVQ a1, t1 MOVQ a2, t2 MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ p256const ADCQ \$0, a2 ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2		SB	BQ	b1	L,	ä	a1			
SBBQ \$0, mul0 MOVQ a0, t0 MOVQ a1, t1 MOVQ a2, t2 MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2		SB	BQ	b2	2,	i	a2			
MOVQ a0, t0 MOVQ a1, t1 MOVQ a2, t2 MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2			•		-					
MOVQ a1, t1 MOVQ a2, t2 MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2		SB	BQ	\$0	9,	r	າບ	l	0	
MOVQ a1, t1 MOVQ a2, t2 MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2		MO	VO	a	Э.	+	t0)		
MOVQ a2, t2 MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ \$0, a2 ADCQ p256const ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2			•							
MOVQ a3, t3 ADDQ \$-1, a0 ADCQ p256const ADCQ \$0, a2 ADCQ p256const ADCQ p256const ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2			•							
ADCQ p256const ADCQ \$0, a2 ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t1, a1			•							
ADCQ p256const ADCQ \$0, a2 ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t1, a1			-							
ADCQ \$0, a2 ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2				-		-				
ADCQ p256const ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2									S	t(
ADCQ \$0, mul0 CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2				-	-					
CMOVQNE t0, a0 CMOVQNE t1, a1 CMOVQNE t2, a2		AD	CQ	p2	25	6	CO	n	S	t:
CMOVQNE t1, a1 CMOVQNE t2, a2		AD	CQ	\$0	Э,	r	າບ	ıl	0	
CMOVQNE t1, a1 CMOVQNE t2, a2		CM	OVQ	NE	Ξ	t(Э,		a	0
									a	3
RET		RE ⁻	т							

```
al(SB),NOSPLIT,$0
0
```

Wrong result with probability 2-32

- 0�(SB), a1
- 1�(SB), a3

- + ANDQ \$1, mul0
- + CMOVQEQ t0, a0
- + CMOVQEQ t1, a1
- + CMOVQEQ t2, a2
- + CMOVQEQ t3, a3

A carry propagation bug

Elliptic Curve Cryptography Crash Course

- Field: numbers modulo p
- Points: like (3, 7); fitting an equation
- Group: a generator point and addition
- Multiplication: repeated addition

ECCCC

Elliptic Curve Cryptography Crash Course (cont.)

- Multiplication: 5Q = Q + Q + Q + Q + Q
- ECDH private key: a big integer d
- ECDH public key: Q = dG (think $y = g^{\alpha}$)
- ECDH shared secret: Q_{shared} = dQ_{peer}

ECCCC

 $Q_2 = dQ_1$

d is BIG. Like, 256 bit. Can't add Q to itself 2²⁵⁶ times.

1

 $+Q_1$

 $Q_2 = dQ_1$

0 1 1 0 1 ... 1 1 0 1 0 1

+Q

 $Q_2 = dQ_1$

1 0 1 1 0 1 ... 1 1 0 1 0 1

+Q x2

1 0 1 1 0 1 ... 1 1 0 1 0 1 x2

 $Q_2 = dQ_1$

+Q x2 x2

1 0 1 1 0 1 ... 1 1 0 1 0 1 $+Q_1$

 $Q_2 = dQ_1$

$+Q x^2 x^2 + Q$

1 0 1 1 0 1 ... 1 1 0 1 0 1 x2

 $Q_2 = dQ_1$

$+Q x^2 x^2 + Q x^2$

1

$+Q_1$ $+Q x^2 x^2 +Q x^2 +Q$

 $Q_2 = dQ_1$

0 1 1 0 1 ... 1 1 0 1 0 1

1

- x2

 $Q_2 = dQ_1$

0 1 1 0 1 ... 1 1 0 1 0 1

$+Q x^2 x^2 +Q x^2 +Q x^2$

0 1

 $Q_2 = dQ_1$

1 1 0 1 ... 1 1 0 1 0 1

$+Q x^2 x^2 +Q x^2 +Q x^2 x^2$

 $+Q_1$

1 0

$+Q x^2 x^2 +Q x^2 +Q x^2 x^2 +Q \dots$

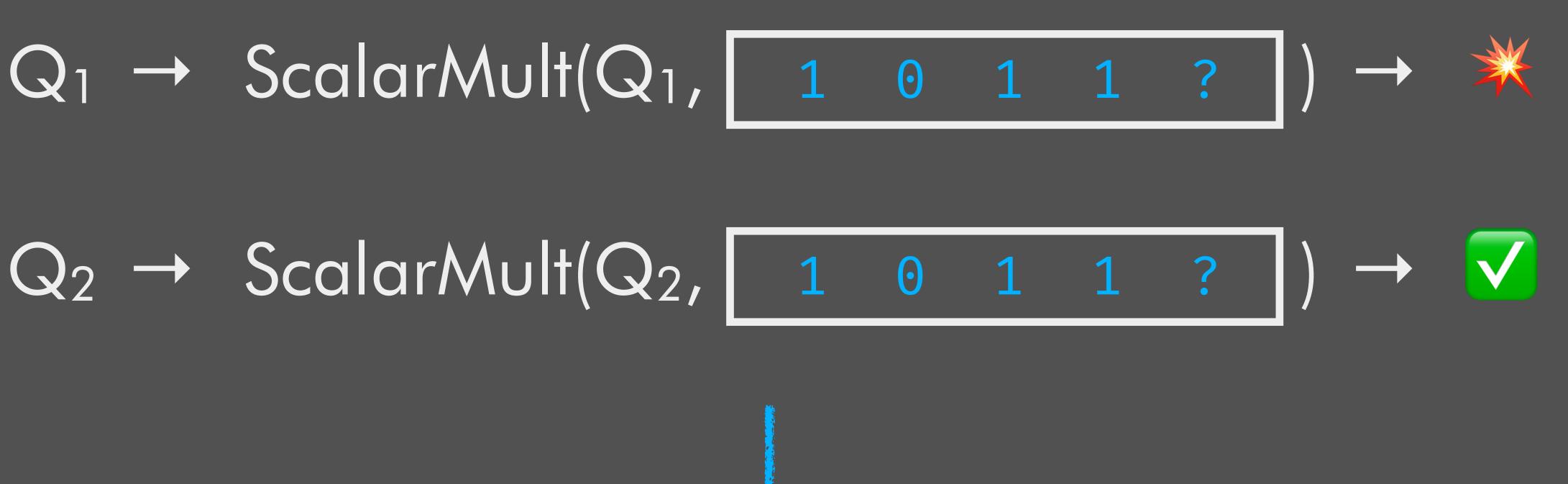
 $Q_2 = dQ_1$

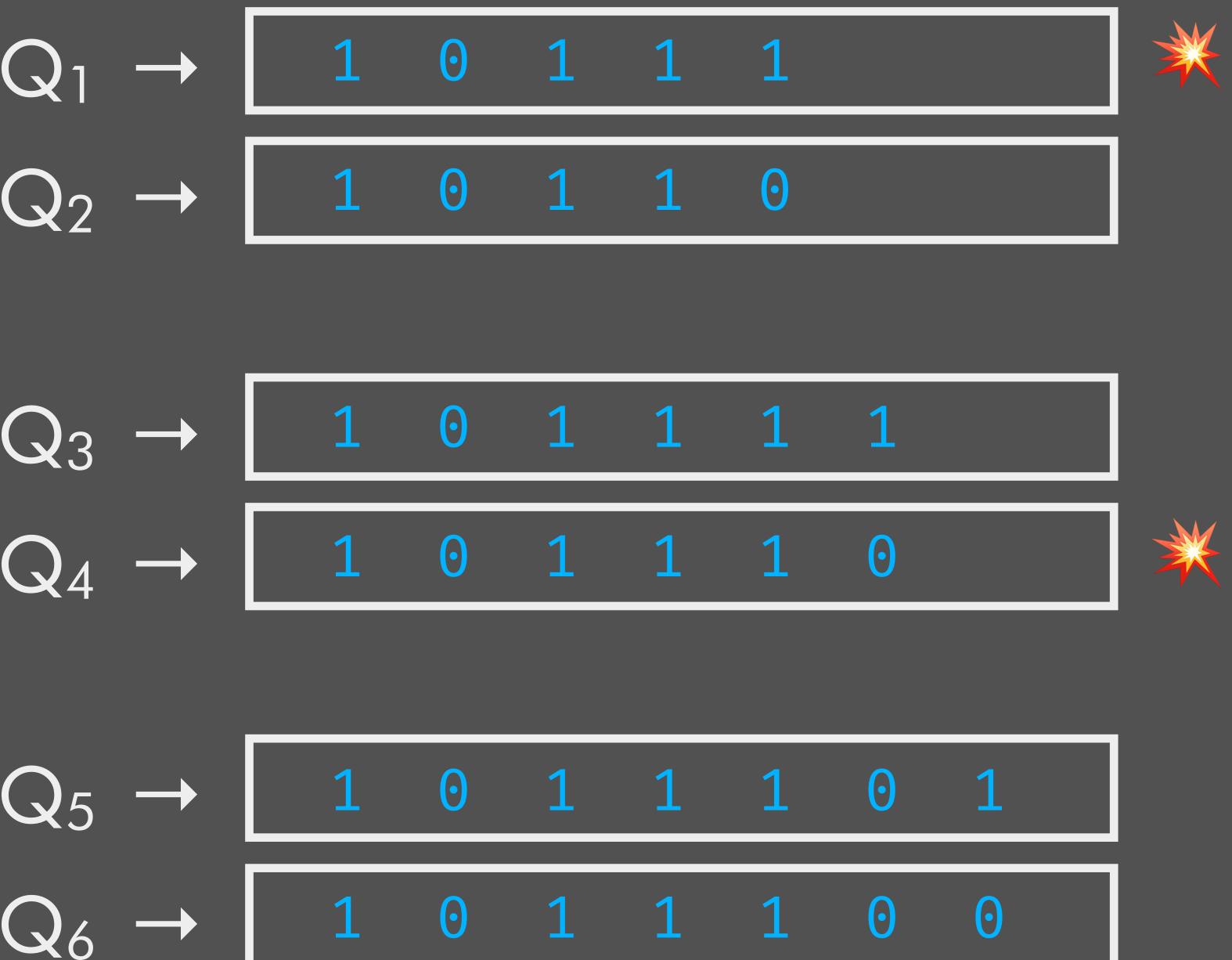
1 1 0 1 ... 1 1 0 1 0 1

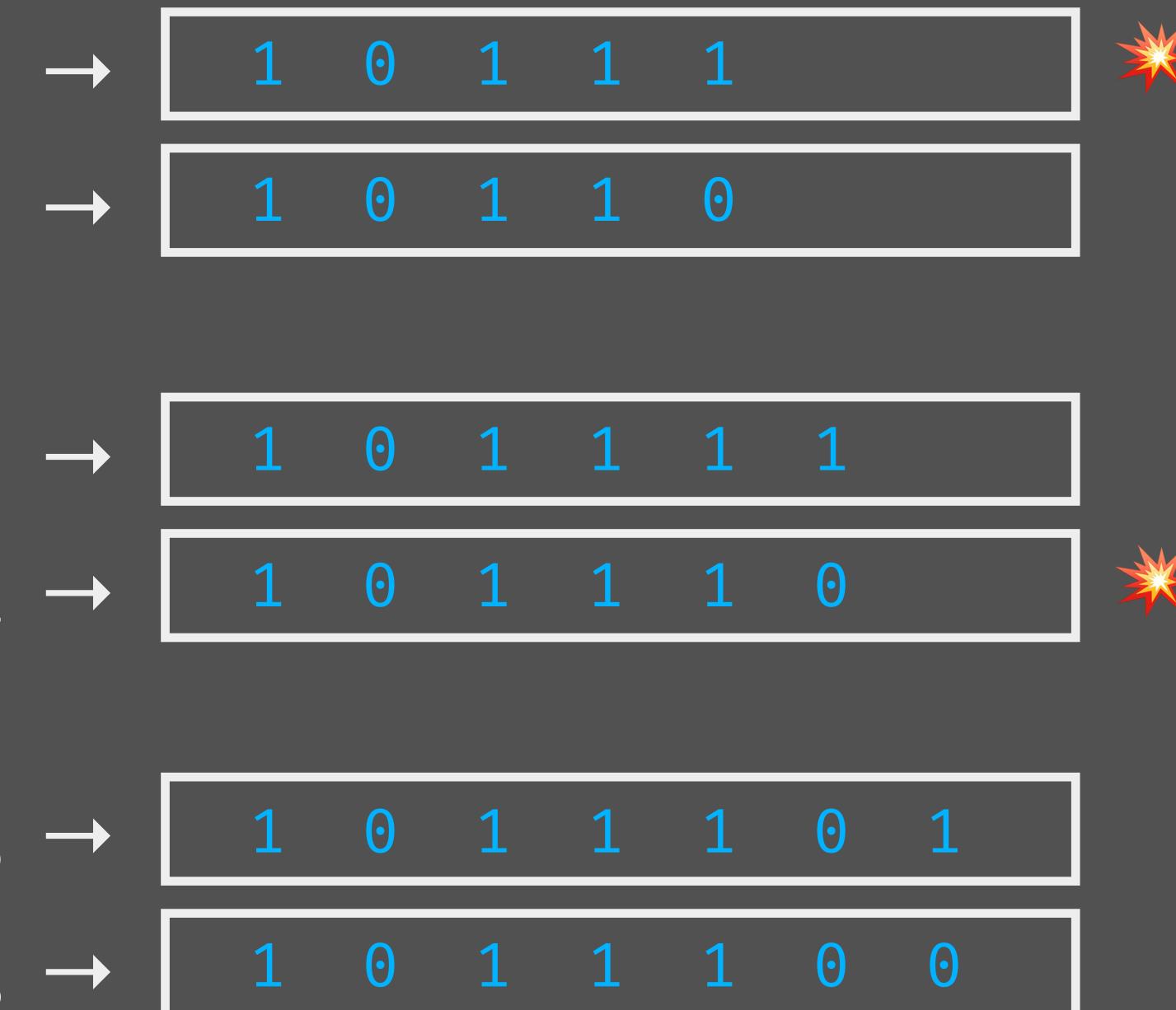
Back to the carry bug

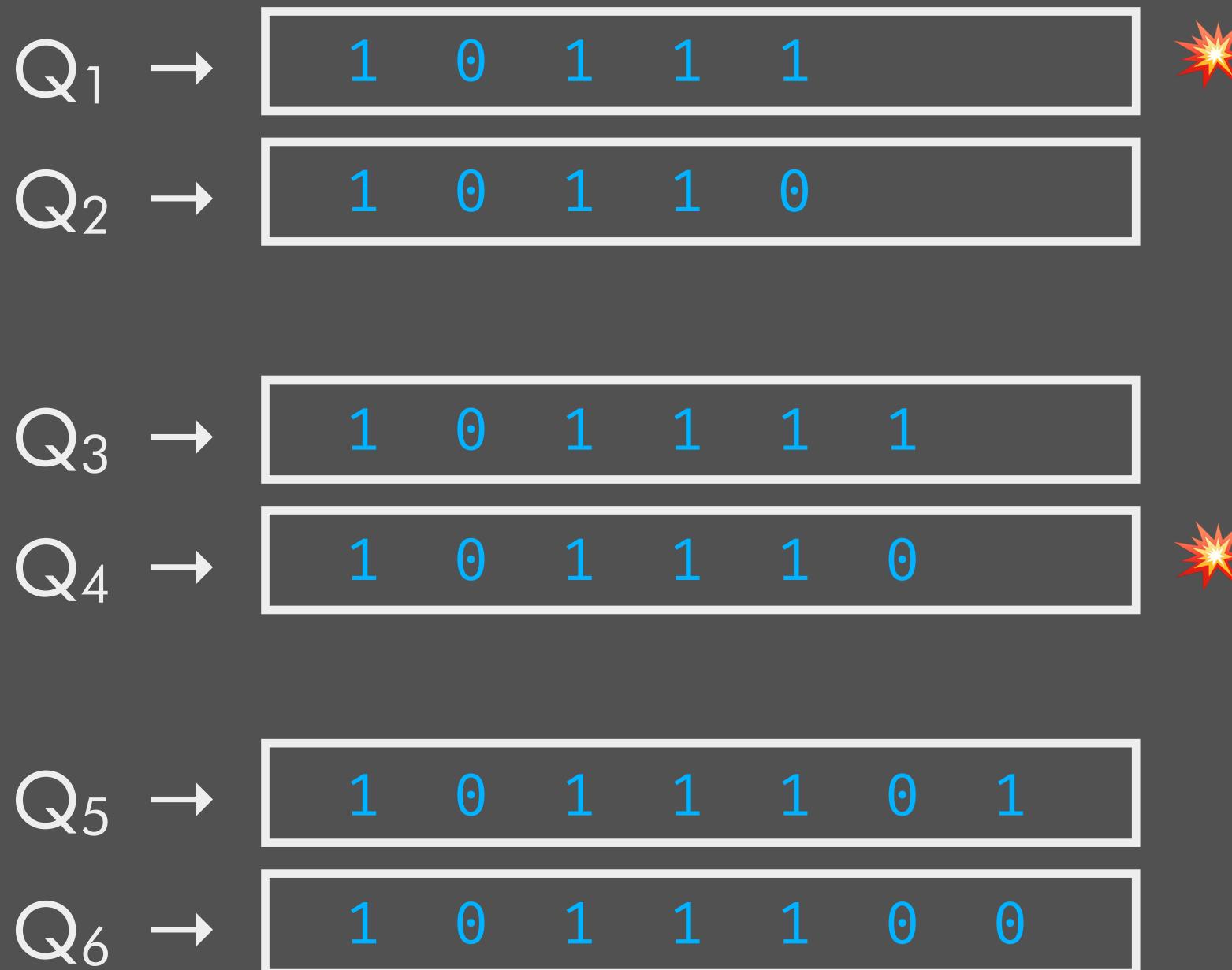
session key attacker supplied secret key secret = ScalarMult(point, scalar) ← Q₂ = dQ └── p256PointAddAffineAsm

└── p256SubInternal ¥


$+Q_1 \times 2 \times 2 + Q_1 \times 2 + Q_1 \times 2 + Q_1 \times 2$







Practical realisation and elimination of an ECC-related software bug attack^{*}

B. B. Brumley¹, M. Barbosa², D. Page³, and F. Vercauteren⁴

¹ Department of Information and Computer Science, Aalto University School of Science, P.O. Box 15400, FI-00076 Aalto, Finland. billy.brumley@aalto.fi ² HASLab/INESC TEC Universidade do Minho, Braga, Portugal. mbb@di.uminho.pt ³ Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK. page@cs.bris.ac.uk ⁴ Department of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium. fvercaut@esat.kuleuven.ac.be

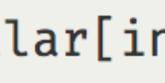
Go implementation of ScalarMult

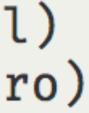
Booth's multiplication in 5-bit windows.

01

- Precomputed table of 1Q to 16Q. Add, double 5 times.
 - 00010 01110 01010 01010 10010 00001 01111 10011 01101


```
Multiplication
     loop
```


for index > 4 { index -= 5if index < 192 { } else { } zero |= sel


```
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
```

```
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64] + (
  wvalue = (scalar[index/64] >> (index % 64)) & 0×3f
```

```
sel, sign = boothW5(uint(wvalue))
```

```
p256Select(t0.xyz[0:], precomp[0:], sel)
p256NegCond(t0.xyz[4:8], sign)
p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
```


Go implementation of ScalarMult Booth's multiplication in 5-bit windows.

00010 01110 01010 01010 10010 00001 01111 10011 01101 01

- Precomputed table of 1Q to 16Q. Add, double 5 times.

- Limbs representation: less overlap and aliasing problems.
- $\{1 0\} \{15 1\} \{7 0\} \{5 0\} \{5 0\} \{9 0\} \{1 0\} \{8 1\} \{6 1\} \{9 1\} \dots$

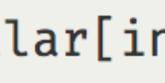
Go implementation of ScalarMult Booth's multiplication in 5-bit windows.

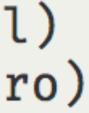
00010 01110 01010 01010 10010 00001 01111 10011 01101 01

Attack one limb at a time, instead of one bit. 33 limb values \rightarrow 16 points / 5 key bits on average.

- Precomputed table of 1Q to 16Q. Add, double 5 times.


```
Multiplication
     loop
```

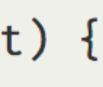

for index > 4 { index -= 5if index < 192 { } else { } zero |= sel

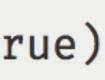

```
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:]) 
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
```

```
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64] + (
  wvalue = (scalar[index/64] >> (index % 64)) & 0×3f
```

```
sel, sign = boothW5(uint(wvalue))
```

```
p256Select(t0.xyz[0:], precomp[0:], sel)
p256NegCond(t0.xyz[4:8], sign)
p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
```



Assembly hook


TEXT paris256SubInternal(SB), NOSPLIT, \$0 XORQ mul0, mul0 SUBQ t0, acc4 SBBQ t1, acc5 SBBQ t2, acc6 SBBQ t3, acc7 SBBQ \$0, mul0 MOVQ acc4, acc0 MOVQ acc5, acc1 MOVQ acc6, acc2 MOVQ acc7, acc3 ADDQ \$-1, acc4 ADCQ p256const0 \Diamond (SB), acc5 ADCQ \$0, acc6 ADCQ p256const1◇(SB), acc7 SBBQ hlp, hlp XORQ \$-1, hlp ANDQ \$1, hlp ADDQ \$0, mul0 CMOVQNE acc0, acc4 CMOVQNE acc1, acc5 CMOVQNE acc2, acc6 CMOVQNE acc3, acc7

- // Paris256: if the carry bit is clear, the bug would be triggered.
- SUBQ hlp, mul0 // was: ADCQ \$0, mul0; but we stole the carry bit above


```
func (t *paris256Trace) Fuzz(precomp [16 * 4 * 3]uint64, prev limb, zero int, pp *p256Point) {
   var t0 p256Point
   for _, b := range boothSpace {
        p := pp
        if b.Sel = 0 & zero = 0 {
            // If this round, the one before, and all the ones before are 0,
            // all the operations are discarded. Spot this by exclusion.
            continue
        } else if zero = 0 { // p = \{-sign\}precomp[sel]
            p256Select(t0.xyz[0:], precomp[0:], b.Sel)
            p256NegCond(t0.xyz[4:8], b.Sign)
            p = \delta t 0
        } else if b.Sel \neq 0 { // p = p + {-sign}precomp[sel]
            p256Select(t0.xyz[0:], precomp[0:], b.Sel)
            p256NegCond(t0.xyz[4:8], b.Sign)
          t.X("fuzz-add", paris256PointAddAsm(t0.xyz[:], pp.xyz[:], t0.xyz[:]), b.Sel, true)
            p = \delta t 0
        } // else p = p
        t.X("fuzz-double-1", paris256PointDoubleAsm(t0.xyz[:], p.xyz[:]), b.Sel, true)
        t.X("fuzz-double-2", paris256PointDoubleAsm(t0.xyz[:], t0.xyz[:]), b.Sel, true)
        t.X("fuzz-double-3", paris256PointDoubleAsm(t0.xyz[:], t0.xyz[:]), b.Sel, true)
        t.X("fuzz-double-4", paris256PointDoubleAsm(t0.xyz[:], t0.xyz[:]), b.Sel, true)
       t.X("fuzz-double-5", paris256PointDoubleAsm(t0.xyz[:], t0.xyz[:]), b.Sel, true)
```



```
for i := range dlog {
        dlog[len(dlog)-1-i] +=
        if dlog[len(dlog)-1-i]
            break
    p := p256PointFromAffine(bi
    p256PointAddAsm(p.xyz[:], p
    return p.p256PointToAffine(
// Import the patched p256PointAddAsm.
//go:linkname p256PointAddAsm crypto/elliptic.p256PointAddAsm
```

func p256PointAddAsm(res, in1, in2 []uint64)

func nextPoint(dlog []byte, bigX, bigY *big.Int) (x, y *big.Int) {

The first limb

Doubling

The first limb

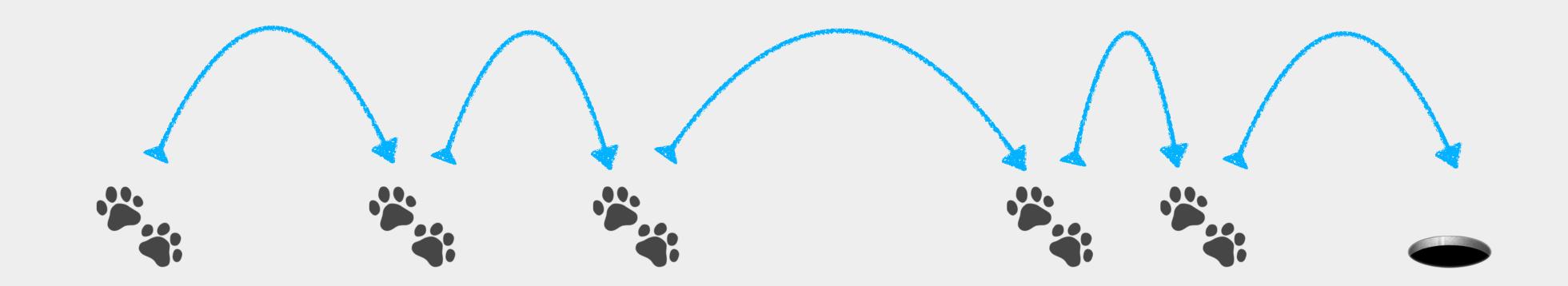
Doubling

$x2 x2 x2 x2 x2 \rightarrow 3 x2^7$

The first limb

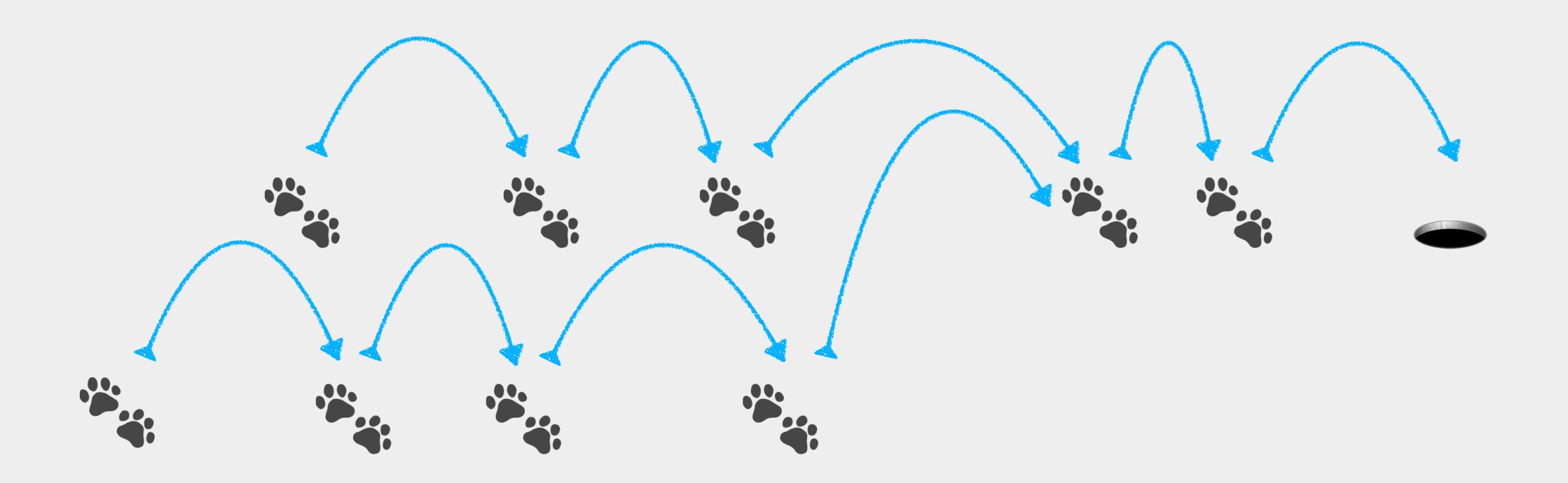
Doubling

https://www.flickr.com/photos/cafuego/39512218381



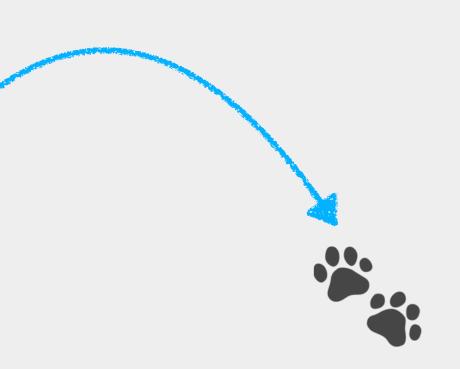
The last bits

https://www.flickr.com/photos/cafuego/39512218381



Kangaroo jumps depend from the terrain at the start point.

Let a tracked kangaroo loose. Place a trap at the end.


Kangaroo jumps depend from the terrain at the start point.

If the wild kangaroo intersects the path at any point, it ends up in the trap.

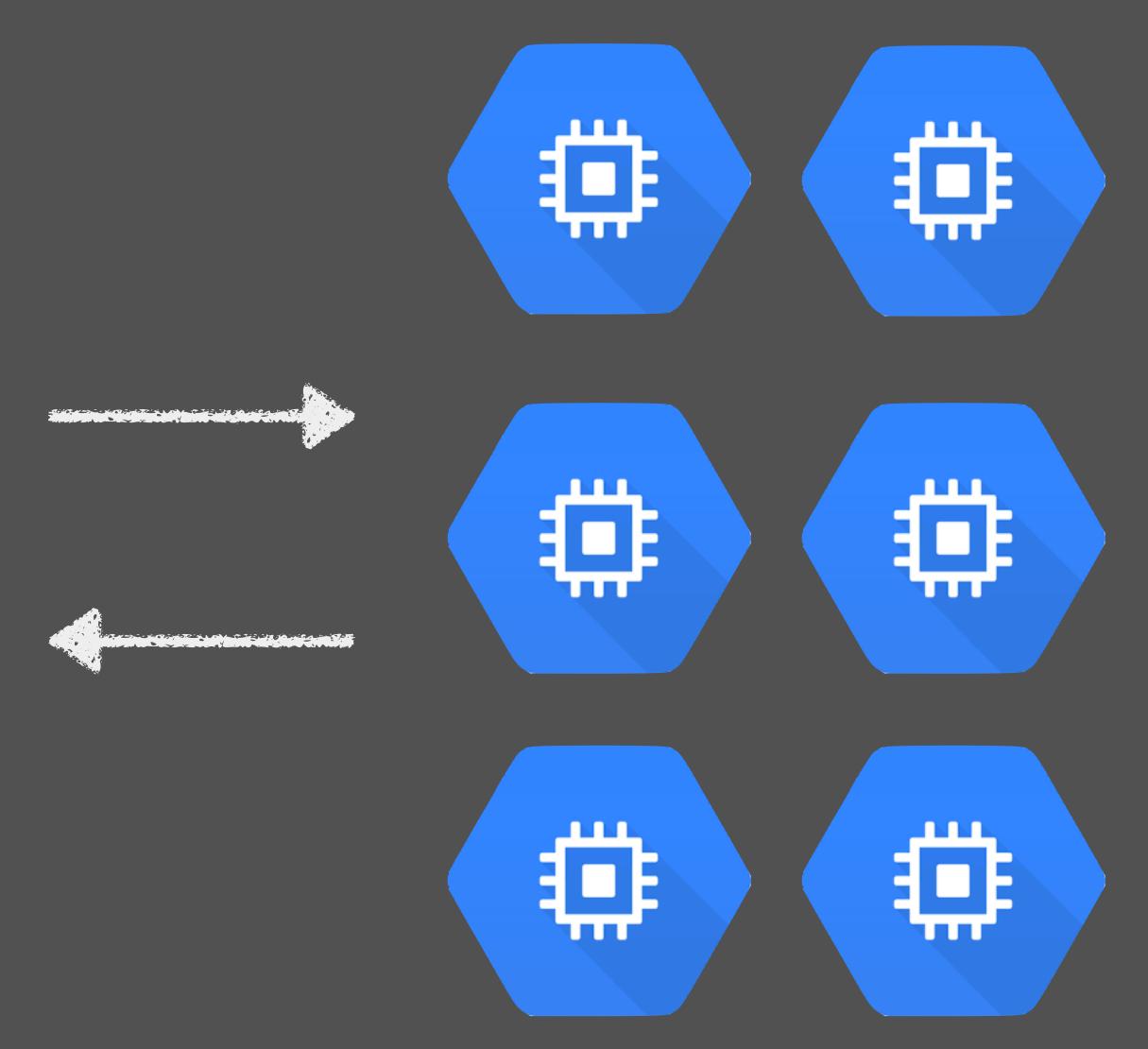
Back to elliptic curves.

A jump is $Q_{N+1} = Q_N + H(Q_N)$ where H is a hash. Same starting point, same jump. You run from a known starting point, then from dG. If you collide, you traceback to d!

 JSON Object Signing and Encryption, JOSE (JWT) ECDH-ES public key algorithm • go-jose and Go 1.8.1

Check if the service successfully decrypts payload

Atarget


Spot instance infrastructure

Sage dispatcher

/work

/result

Figures!

- Each key: ~ 52 limbs, modulo the kangaroo
- Each limb: ~ 16 points on average
- Each point: $\sim 2^{26}$ candidate points
- (2²⁶ * 16) candidate points: ~85 CPU hours

• Total: \sim 4,400 CPU hours / \sim \$35 on the \bigtriangleup

root@paris: ~ — ssh paris — 113×29

	ueries: 2) (work: precomputed) L4 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -
	ueries: 0) (work: 0.0 bits) L4 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -
summary	
limbs: key: queries: work:	80000000000000000000000000000000000000

-1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16

-1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16

Assembly Policy

This document describes when and how to add assembly code to routines in the Go-maintained packages. This document is a work in progress.

In general, the rules are:

- We prefer portable Go, not assembly. Code in assembly means (N packages * M architectures) to maintain, rather than just N packages.
- Minimize use of assembly. We'd rather have a small amount of assembly for a 50% speedup rather than twice as much assembly for a 55% speedup. Explain the decision to place the assembly/Go boundary where it is in the commit message, and support it with benchmarks.
- Explain the root causes in code comments or commit messages. What changes in the compiler and standard library would allow you to replace this assembly with Go? (New intrinsics, SSA pattern matching, other optimizations.)
- Make your assembly easy to review; ideally, auto-generate it using a simpler Go program. Comment it well.
- Test it well. The bar for new assembly code is high; it needs commensurate test coverage. Existing high-level tests for Go implementations are often inadequate for hundreds of lines of assembly. Test subroutines individually. Fuzz the assembly implementation against the Go implementation.

Future directions

• If possible, port existing reviewed implementations. A tool should make it easy to review diffs from decompiler output. Consider the license implications.

Pages 142

Contents

- Home
- Getting started with Go

=C

- Working with Go
- Learning more about Go
- The Go Community
- Using the Go toolchain
- Additional Go Programming Wikis
- Online Services that work with Go
- Troubleshooting Go Programs in Production
- Contributing to the Go Project
- Platform Specific Information
- Release Specific Information

Clone this wiki locally

https://github.com/golanc

Clone in Desktop

Cryptopals #66

https://toadstyle.org/cryptopals/66.txt

leave the limbs you've lost!

they belong to me and **@FiloSottile** now.

8:05 PM - 26 Dec 2017

Thank you! No bug is small enough.

Sean Devlin @spdevlin

Filippo Valsorda @FiloSottile filippo@golang.org

