
2021: A Titan M Odyssey

Maxime Rossi Bellom, Damiano Melotti, and Philippe Teuwen
mrossibellom@quarkslab.com

dmelotti@quarkslab.com

pteuwen@quarkslab.com

Quarkslab

Abstract. In the past years, most of the Android devices were relying
on ARM TrustZone for critical security features.
In 2018, with the release of the Pixel 3, Google introduced the Titan M
chip, a hardware security module used to enhance the device security by
reducing its attack surface, mitigating classes of hardware-level exploits
such as Rowhammer or Spectre, and providing several security sensitive
functions, such as a Keystore backend called StrongBox, Android Verified
Boot (or AVB) and others. It has been now almost three years since this
announcement and yet very little information about it is available online.
In this whitepaper, we deep dive into the Titan M’s internals and usages.
Our goal is to give an understanding of its attack surface as well as its role
in some critical security features such as the StrongBox/Keymaster. We
provide some details on how we performed our research from the reverse
engineering of the firmware to the physical sniffing of the communication
and fuzz testing. We discovered some known and previously unknown
vulnerabilities which, among others, allowed us to execute code on the
chip and helped us to solve some of the remaining mysteries behind this
chip.

1 Introduction

Smartphones represent one of the most complex scenarios for information
security. Over the years, their computational power has increased to a
point that they can no longer be clearly distinguished from computers.
At the same time, they store valuable data and are used to perform
security-sensitive actions that represent interesting targets for attackers.

Given such a broad threat model [22], and considering that the ex-
tremely large computing base of a modern OS cannot be fully trusted,
vendors started to leverage hardware to improve the security of their
systems. Concretely, we can distinguish three ways to implement secure
hardware solutions [25].

– Virtual Processor: this is the most widely adopted approach and
it consists in separating hardware resources within the same chip,

2 2021: A Titan M Odyssey

implementing a secure and non-secure world as execution modes of
the main CPU. ARM TrustZone is certainly the most notable instance
of this solution [9].

– On-SoC Processor: this solution is used by Apple in its Secure En-
clave [8]. Instead of featuring one CPU that can run in two states, in
this case there are two CPUs, a main one dedicated to non-sensitive
operations and one for the secure state. These two isolated processors
lie together on the same System-on-Chip.

– External Coprocessor: the last option features a physically separated
and completely independent chip, handling only security-sensitive op-
erations. The chip can communicate with the main CPU using various
types of buses, runs its own firmware and has full access to hardware
resources. This is the solution adopted by Google in its Titan M, which
is also the first example of a dedicated chip in an Android device.
Before, other devices only supported Secure Elements, more limited
modules only for payments or other restricted use cases [12].

One of the main features brought by Titan M is attack surface reduc-
tion, improving the isolation level given by TrustZone. Like with other
trusted chips, since the firmware is limited in terms of functionality (with
a size orders of magnitude smaller than the one of a standard OS), the
probability of mounting a software attack is significantly reduced. In addi-
tion to that, the physical isolation between the chip and the main SoC
also mitigates classic hardware-level exploits such as Rowhammer [16],
Spectre, and Meltdown [17, 20, 24]. The presence of dedicated Tamper
Resistant Hardware (TRH) guarantees improved resistance against side-
channel attacks, which are actually one of the factors influencing this
design choice [18,23].

When the chip was announced, Google reported that its firmware
source code would be made public, allowing anyone to reproduce binary
builds [24]. To date, no source code has been published and not much
information is available about it. Despite that, to motivate researchers into
investigating this module, the company introduced a special reward of one
million dollars, for whoever can find a full-chain remote code execution
exploit with persistence [19]. Indeed, Titan M represents the so-called Root
of Trust of a device, the baseline all security features rely upon: in case of
compromise, the target falls completely under the attacker’s control.

This is the first extensive study on Titan M. We start by analyzing
the architecture and internals of the chip, and reverse engineering the
firmware. With the acquired knowledge, we explain the boot and update
procedure, how the chip communicates with Android and how a specific

M. Rossi Bellom, D. Melotti, P. Teuwen 3

Android feature (StrongBox) is backed by Titan M. We present the tools
we developed during the research (available at https://github.com/

quarkslab/titanm) and how we used them to facilitate both static and
dynamic analysis of the chip. After showing our approach also on the
hardware side, we dive into some vulnerabilities and exploitation, which
allowed us to build a better picture of how the chip works. Finally, we design
and implement a fuzzer that, based on the grammar of the exchanged
messages, automatically tests the chip with a black-box approach. Thanks
to fuzzing, we can rediscover some vulnerabilities found statically, as well
as some new ones that we reported to the vendor.

2 Architecture and Internals

In its first communication about Titan M [24], Google provides some
information about the chip hardware. The chip is based on an ARM
Cortex-M3 architecture with an internal flash memory and 64 KB of RAM.
Since the RAM is very small, the code is executed directly from the flash
memory. Also, the chip contains several hardware accelerators for common
cryptography algorithms (such as AES, SHA and public key algorithms),
and a True Random Number Generator. On top of this, the chip includes
a set of hardware defenses protecting against advanced hardware attacks.

2.1 Firmware Introduction

The firmware can be found in the filesystem of a Google Pixel 3 smartphone,
at the path /vendor/firmware/citadel. It is a raw binary file, not
encrypted nor obfuscated. We follow two parallel approaches to study it:
on the one hand, we focus on pure static reverse engineering, on the other
hand, we gather additional knowledge by reading the source code of the
Android components responsible for the communication with the chip.

On the AOSP, the main source of information is the folder
platform/external/nos/host, where we can find some header files con-
taining relevant information about the module.1 Nos is an abbreviation
for Nugget OS, which might be a code name for chip’s operating system.

The repository contains the source code of the citadel_updater tool,
as well. The compiled utility, located at /vendor/bin/hw on the device,
can be used in an adb root shell, to get the running version of the firmware
and some statistics, update the chip, and perform other actions on its
current state. citadel_updater also allows to retrieve a snapshot of the

1 https://android.googlesource.com/platform/external/nos/

https://github.com/quarkslab/titanm
https://github.com/quarkslab/titanm
https://android.googlesource.com/platform/external/nos/

4 2021: A Titan M Odyssey

firmware dependencies: among the third party ones, for example, we can
find nanopb, the library used to implement the communication protocol
with Android (cf. Section 2.5).

The memory layout of the firmware is reported in a header file in the
AOSP.2 In total, there are four images, two RO and two RW. Despite
these names suggesting the permissions of the regions (Read-Only and
Read-Write), both can be overwritten during an update. Each image is
duplicated to support A/B updates, ensuring that a valid image is always
present on the device during an update [10].

The firmware is based on Chromium Embedded Controller (EC), an
open-source microcontroller OS developed by Google.3 This represents
another useful source of information for reverse engineering: many functions
are very similar and they can be easily matched thanks to the presence of
debugging statements with the same strings.

EC is a lightweight OS written in C. It is built around the concept of
tasks, which can be defined as independent execution units with a fixed
pre-allocated stack. The firmware does not use dynamic allocation, thus
all the memory required by a task must be explicitly defined at compile
time.

During execution, the chip is interrupt-driven and can run in two
execution modes: handler (privileged) and thread (privileged and non-
privileged, depending on the configuration). Tasks run in thread mode;
to change execution context, a software interrupt is raised (using the svc

instruction) and processed by the scheduler, which instead runs in handler
mode [1].

The latest version of the firmware contains nine tasks: some of them
are proper Trusted Applications (TA), while some others work in support
of the OS.

– << idle >>: executed when no other tasks are;

– HOOKS: managing events and timers;

– NUGGET: responsible for OS control, implementing the required logic
for password checks, firmware updates, and other system-related com-
mands;

– FACEAUTH: the TA providing hardware-backed support for biometric
authentication;

– AVB: the Android Verified Boot TA;

2 https://android.googlesource.com/platform/external/nos/host/generic/+/

refs/heads/android11-release/nugget/include/flash_layout.h
3 https://chromium.googlesource.com/chromiumos/platform/ec/

https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/android11-release/nugget/include/flash_layout.h
https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/android11-release/nugget/include/flash_layout.h
https://chromium.googlesource.com/chromiumos/platform/ec/

M. Rossi Bellom, D. Melotti, P. Teuwen 5

– KEYMASTER: the Keymaster TA, corresponding to the StrongBox API
in the Android Keystore [14];

– IDENTITY: the Identity TA, to securely store identity documents;
– WEAVER: the Weaver TA, which allows verification of user lock screen

factor with hardware support (the equivalent of Gatekeeper [13]);
– CONSOLE: managing a simple console accessible from the chip’s UART

interface.

In EC, the list of tasks can be found in the ec.tasklist file. In the
Titan M firmware, instead, we can find a data structure in memory storing
for each task the value of the r0 register, a pointer to the main routine of
the task, and the associated stack size.

2.2 Boot Process

At boot, the chip first executes a small piece of software that is not present
in the firmware raw file, called Boot ROM. The Boot ROM then verifies
and launches one of the RO images, also called the loader. The loader
verifies and launches one of the RW images, representing the main OS,
that finally starts the different tasks in charge of the main features of the
chip.

The image header contains all the information about the signature
and the key that needs to be used with it, the version of the image, the
parts of the image that contain executable code, and so on (Listing 1).

struct SignedHeader {

uint32_t magic ; // -1 (thanks , boot_sys !)

uint32_t signature [96];

uint32_t img_chk_ ; // top 32b of expected img_hash

// everything below is part of img_hash

uint32_t tag [7]; // words 0-6 of RWR/FWR

uint32_t keyid ; // word 7 of RWR

uint32_t key [96]; // public key to verify signature

uint32_t image_size ;

uint32_t ro_base ; // readonly region

uint32_t ro_max ;

uint32_t rx_base ; // executable region

uint32_t rx_max ;

uint32_t fusemap [FUSE_MAX / (8 * sizeof (uint32_t))];

uint32_t infomap [INFO_MAX / (8 * sizeof (uint32_t))];

uint32_t epoch_ ; // word 7 of FWR

uint32_t major_ ; // keyladder count

uint32_t minor_ ;

uint64_t timestamp_ ; // time of signing

uint32_t p4cl_ ;

6 2021: A Titan M Odyssey

// bits to and with FUSE_FW_DEFINED_BROM_APPLYSEC

uint32_t applysec_ ;

// bits to mesh with FUSE_FW_DEFINED_BROM_CONFIG1

uint32_t config1_ ;

...

Listing 1. Extract of the image header C structure from EC source code4

The Boot ROM and the loader use similar initialization and verification
steps when launching the next image. We can summarize them as follows.

First, they select the most recent candidate by comparing their versions
computed from the fields epoch, major, minor and timestamp present in
the images’ headers.

Then, they verify that the magic number in the header is equal to
0xfffffffe (-2 if used as a signed integer). This value can be changed
during the update process to disable an image (see Section 2.3).

Finally, the signature of the candidate is verified. Several SHA-256
hashes are computed: one from the full image and two others from values
that are present in particular memory regions, a flash region called INFO

and a second one that we called fuses (which is a memory region where
bits can be turned to 1 only once). Only some values from these regions
are retrieved based on the fusemap and infomap arrays present in the
image header. This allows to protect against rollbacks. A final hash is
computed from the previous hashes and given to the hardware component
responsible for verifying the signature. The key used for the verification
is selected using the keyid field of the image header from a set of keys
already present in data of either the Boot ROM or the loader.

2.3 Firmware Update

There are two ways to change the firmware of the Titan M chip: the first
one is a firmware update mechanism implemented in the nugget task, and
the second one is a rescue feature implemented in the loader of the chip.

The regular firmware update allows the Android system to send a new
firmware image to the Titan M. Two commands are used by the Android
system to achieve this:

– The first one takes as an input an address, a byte buffer and the
first 4 bytes of the SHA-1 hash of the byte buffer. The command

4 https://chromium.googlesource.com/chromiumos/platform/ec/+/

a7f535b336267d55f263dac024f6a073b1c56bbe/chip/g/signed_header.h

https://chromium.googlesource.com/chromiumos/platform/ec/+/a7f535b336267d55f263dac024f6a073b1c56bbe/chip/g/signed_header.h
https://chromium.googlesource.com/chromiumos/platform/ec/+/a7f535b336267d55f263dac024f6a073b1c56bbe/chip/g/signed_header.h

M. Rossi Bellom, D. Melotti, P. Teuwen 7

handler writes the buffer at the corresponding address. Of course, not
all addresses are allowed, only the unused RO and RW images can be
overwritten. The buffer size is 0x800 bytes, so this command needs to
be called several times to update a complete image. In addition, the
nugget task replaces the magic number of the new image header by
another value so that the image is ignored by the loader at boot.

– To reactivate the new image and have it considered as a candidate at
boot, there is another command that takes as an input a hash value
that is derived from the user password. If the hash is valid, then the
nugget task replaces the magic number in the image header by its
regular value (0xfffffffe).

Note that there is no image verification during the update mechanism,
but there is a signature verification performed on the image at boot,
preventing the system from booting on a non-legitimate image. Also, the
user password is needed to activate the new image. Without it, the chip
does not boot on the new image.

SHA-256
(Packet number + offset + data)

Packet number Flash offset

Data

SHA-256
(Header + data)

0x28

0x3d8

0x20

0x420

Fig. 1. Format of a packet from the rec file

8 2021: A Titan M Odyssey

The second mechanism to change the firmware, the rescue feature,
allows to flash the RW_A image without the user password. Here again, the
firmware is transmitted from the main CPU to the Titan M. The packets
contain a SHA-256 hash of the data, a packet number, an offset that is
used to compute the address in flash memory, and finally a byte buffer
that is written at the provided address. With this mechanism, the magic
number of the image is not changed, which means that the new image can
be considered as a candidate at next boot. However, when this feature
is triggered, and before updating the image, the chip erases all the user
data, the secrets such as the keys and the RW_B image. This feature can
be triggered from the bootloader of the main CPU when it is in fastboot

mode, through the specific command oem citadel rescue. It takes as an
input the image in a specific format, with the .rec extension. In this format,
the image is divided into chunks, each one containing extra metadata: a
number, a flash offset and some SHA-256 hashes (see Figure 1).

2.4 Firmware Security

From a security point of view, the security of the firmware benefits from
its simplicity. Since the chip does not use dynamic allocation, entire classes
of bugs are avoided. In addition to that, in this section we analyze the
actual security features implemented and the attack surface exposed.

First, on the Android side, we need to remark that root access is
required to interact with the chip’s driver and send custom messages.
This is already a security protection against tampering with Titan M: the
Android Platform Security Model features a sandboxing mechanism that
prevents processes to start with superuser privileges [23]. Such mechanism
can be bypassed through the so-called rooting, which implies modifying
the system to ignore access control protections [21]. Root access can be
obtained intentionally by the user, or maliciously through exploitation of
a vulnerability (or a combination of them). Either way, this is the first
step required for an exploit chain targeting the secure chip. Still, this
does not lower the impact of a vulnerability on Titan M: in fact, the
hardware module should be resistant to attacks even if the kernel is fully
compromised.

The Titan M does not feature the standard protections that can be
found on more complex operating systems. Being based on ARM Cortex-
M3, the chip has no Memory Management Unit (MMU), thus measures
like Address Space Layout Randomization (ASLR) and such cannot be
adopted. Despite that, there are two practical exploit mitigation techniques
implemented against memory corruption vulnerabilities.

M. Rossi Bellom, D. Melotti, P. Teuwen 9

The first one relies on the hardware support given by the chip itself.
The ARM Cortex-M3 CPU features an optional Memory Protection Unit
(MPU), which allows to divide the memory map into up to 8 regions,
each of them with a specific location, size, attributes and permissions [2].
The MPU allows to set a region as non-executable and, in practice, this
is used to disable instruction fetching on the stack. While reversing the
firmware, we can find the appropriate functions that manipulate the MPU
configuration, by accessing some hardware registers mapped at addresses
from 0xe000ed90 to 0xe000edb8.

The chip also comes with another mechanism to configure memory
regions, that can be used to provide read and write permission, on top
of the MPU configuration. In fact, this mechanism is the main one used
by the system to configure the permission of the flash memory and some
particular RAM regions. Each region is defined by three registers:

– A base address register indicating the start of the region;

– A size register which indicates the size of the region;

– And finally, a control register that represents the state of the region (if
enabled or disabled) and the permission associated to it (read and/or
write).

The concept of memory region exists in EC, but the regions in the
Titan M are mapped at different addresses. For example, the flash region 0
base address register is mapped at the address 0x40100270 in the chip. We
found 6 flash regions used in the Titan M. Flash regions 0 and 1 protect
the code of the active RO and RW, usually with read-only permissions
while the regions 2 and 3 protect the code of the inactive RO and RW with
read and write permissions. The other flash regions are used to configure
the permissions of the memory containing the persistent data. There are
also two staging flash regions that are used by the Boot ROM and the
loader to validate the signature of the candidate images at boot. As of
now, it is unclear how the execution permission is given to the active flash
region. We believe the chip uses a custom mechanism tied to the staging
regions and the signature verification hardware, but this should be subject
of proper testing to validate this theory.

The firmware also contains a simple software control to detect memory
overflows: the stack area of each task is initialized with a hardcoded stack
canary, of value 0xdeadd00d. The scheduler (that runs in handler mode,
hence using a separate stack) checks the content of the address pointed
by the process stack pointer before switching tasks, raising an interrupt
that leads to a reboot if the canary is not found.

10 2021: A Titan M Odyssey

Stack canaries are a common exploit mitigation technique, which
theoretically aims at increasing the difficulty for an attacker trying to
gain code execution using an out-of-bounds write primitive. The inherent
effectiveness of such a technique, though, relies on having the canary set to
a random value, so that the attacker cannot easily predict it and include
it in their malicious payload. Alternatively, the canary can include null
bytes, which cannot be placed in a malicious payload if the out-of-bounds
write consists in a function manipulating a C-string. Clearly, none of these
properties is met in this case. Combined with the fairly easy access to the
firmware file, this protection is therefore practically useless, since finding
the canary value for an attacker is quite straightforward. Given these
considerations, this measure may have been implemented just as an error
detection mechanism, without aiming at improving the security of the
chip. Initializing the stack with a recognizable value, in fact, allows the
chip to observe when too much memory is used.

2.5 Communication with Android

In its functioning, the Titan M is seen as a security peripheral of the
Android device and the two interact in a client-server architecture. At hard-
ware level, the communication is done on the Serial Peripheral Interface
(SPI) bus, connecting the security chip with the application processor.

HAL
daemons

HAL
daemons

HAL
daemons

citadeld kernel driver

Titan M

binder

IOCTL

SPI

Main SoC

Fig. 2. Sending SPI command from Android

M. Rossi Bellom, D. Melotti, P. Teuwen 11

On Android, a kernel driver is in charge of handling the SPI com-
munications. It is possible to communicate with the driver from the
userland through input-output control (IOCTL) calls on the device driver
/dev/citadel0. The Android daemon citadeld is actually the only one
that communicates with the driver. Its role is to dispatch the commands
coming from other Android components: the Hardware Abstraction Layer
(HAL) services. HAL services act as an interface for the Android runtime
to communicate with specific hardware. They expose a generic API to
the rest of the system that should be the same across Pixel devices. In
general, there is one HAL daemon per functionality. For example, in the
case of Titan M we can mention the daemons keymaster, identity and
weaver. The command’s data are generated with Protocol Buffers (Pro-
tobuf), a well-known serialization framework developed by Google.5 The
protobuf definitions for Titan M tasks are open source and part of AOSP.
This is really helpful for the reverse engineering task, and we use them
in one of our tools (see Section 3.3). But it is also interesting from the
security point of view since it reduces the risk of introducing bugs while
writing custom parsers. Finally, commands are sent to citadeld along
with an application and a command id, through the Android interprocess
communication driver: binder (more specifically, the vndbinder driver,
dedicated to vendor services).

On the Titan M side, an SPI driver is responsible for reassembling
the commands from the SPI packets. The driver is using a global array
that contains, for each task that communicates over SPI, two callbacks for
incoming and outgoing messages, a unique application id, and a structure
that defines among others the buffers where the received data and the
data to be sent should be placed. This is why each SPI packet contains
an application id, so the driver can select the callback of the right task.
Once a command is fully reassembled, the driver triggers an event that
is received by the task of the corresponding application id. Most of the
tasks use the nanopb library, a protobuf implementation designed for
embedded software, to handle the command requests and reply data.6

The nugget task is the only exception and the parsing of the request data
is implemented directly in the task.

2.6 StrongBox and Keymaster

One of the most interesting tasks in Titan M is Keymaster. This is the
trusted application associated to StrongBox, the highest level of security

5 https://developers.google.com/protocol-buffers
6 https://github.com/nanopb/nanopb

https://developers.google.com/protocol-buffers
https://github.com/nanopb/nanopb

12 2021: A Titan M Odyssey

for keys generated using the Android Keystore system [14]. Keymaster
is the largest task on the chip. It implements the logic to generate, use
and attest cryptographic keys, as well as perform several other operations
with them.

By design, StrongBox keys must never appear in plaintext in the main
OS: cryptographic operations in fact only happen inside the hardware
trusted module. Similarly to ARM TrustZone, Titan M does not store
any key material: keys are encrypted with a Key Encryption Key (KEK),
and stored in the device as key blobs. A key blob is a structure meant to
hold the actual key in the Android file system. These blobs are stored
in /data/misc/keystore/. To keep track of the keys’ owners, Android
relies on the actual name of the files (that contains the application user
id) and their Linux permissions.

A direct consequence of this architecture is that root can use any key,
by requesting encryption or decryption operations while impersonating
other apps. Note that this also holds for StrongBox keys: the Android
Security Model only ensures that those keys cannot be extracted from
the secure chip, but cannot prevent them from being used [23]. In prac-
tice, it is impossible for Titan M to check whether a request is legiti-
mate: once it receives a message with a key blob, it uses it to perform
the operation requested. The countermeasure offered by the Android
system is authentication-bound keys. That is, if a key is created with
setUserAuthenticationRequired(true), the user will have to authenti-
cate themselves using biometrics, whenever the key has to be used.7 This
clearly introduces some friction, but represents an acceptable trade-off for
the most security-sensitive cases.

To encrypt StrongBox keys, Titan M uses a KEK derived from several
components. Among them, one of the most interesting ones is the Root
of Trust. This is a SHA-256 digest sent by the Pixel’s bootloader, using
the SetRootOfTrust command of the Keymaster task. The operation is
performed whenever the chip is not initialized and can only be done in
bootloader mode.

Whenever the Root of Trust is set, the Titan M also updates a 32-byte
salt with random bytes generated locally. This salt is also used to craft
the KEK. These values are stored in a memory area of the chip called
SFS, together with other fields containing additional tokens and status
information. The Keymaster section of the SFS region is 228-byte long.

7 https://developer.android.com/reference/android/security/keystore/

KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)

M. Rossi Bellom, D. Melotti, P. Teuwen 13

3 Tools

In this section we present the tools we developed during this research.
This way, we also follow the evolution of our study and how we tackled
the challenges and difficulties we had to face. All the tools are available
at https://github.com/quarkslab/titanm.

3.1 Ghidra loader

The first tool we developed is a Ghidra [4] loader. This allows to open a
Titan M firmware on the well-known disassembler, mapping the various
regions at the right addresses thanks to the header files in the AOSP.

In addition, we created some further memory regions that we found
while analyzing the firmware. Examples are the RAM partition, and
some regions where hardware registers are mapped. Memory-mapped
hardware registers are common in embedded devices: to communicate
with peripherals, the CPU reads and writes data to specific memory
addresses in the same address space as the main memory. In the case of
Titan M, instances of these peripherals are the cryptographic accelerator
or the MPU.

As mentioned previously, the firmware is a plain raw file, relatively
simple to be reverse engineered. It also contains several debugging strings,
among which some can be found in the EC source code. The combination
of this background knowledge available and this tool makes reversing the
chip even more accessible.

3.2 Frida tracer

Despite reversing being particularly effective with the Titan M firmware,
there are some limitations to this approach. Some features of the chip
are in fact particularly optimized and at low level, thus building a full
picture of the internals is not trivial. In addition to that, interactions with
hardware modules cannot be analyzed, since those functions often simply
wait for the peripheral to complete an operation, to then read the result
returned.

Based on these considerations, a dynamic view over the chip’s func-
tioning would help in understanding its state machines and internals.
Debugging or instrumenting the Titan M is not possible, but we can
explore where to hook on the Android side.

Starting from a high level, we can use the Android Studio debugger
to follow some library calls that we know are supposed to interact with

https://github.com/quarkslab/titanm

14 2021: A Titan M Odyssey

the secure chip (e.g. generation of a StrongBox key). This is a useful and
straightforward way to see which components forward a message within
the Android OS from a user application to the kernel, but the view stands
at an abstraction level too far from our target.

Instead, heading back to the AOSP, we can review the code at
platform/external/nos/host, searching for interesting functions to
trace. In the citadeld daemon, we identified in nos_call_application a
good target, as it is called whenever the daemon wants to send a message
to the Titan M.8 This function takes as arguments the application and
command identifier, the request, and the response with their respective
lengths (the latter is filled by the function itself). We use the Frida dynamic
instrumentation framework to trace calls to this function [3]. Thanks to
the Interceptor API, we can attach to a function exported by a shared
library, in this case libnos_transport, and explore its arguments before
it starts to execute and before it returns.

We developed a tracing script that can be run while hooking the
citadeld daemon. In such a script, we dump the memory region contain-
ing the request and the response. By interacting with a parsing library
(developed together with nosclient, as shown in Section 3.3), these
messages are also deserialized and printed on the Android log.

In addition to passively observing the messages, we can also modify
the parameters passed to the function, by overwriting them in memory. In
other words, with this approach we are able to simulate any interaction
with Titan M and dynamically test it.

Although effective to start exploring the details of the communica-
tion protocol, this solution clearly has some limitations for a larger scale
analysis. In fact, whenever we want to call the traced function with
custom arguments, we have to make Android generate a legitimate com-
mand, to then alter the parameters. A convenient solution for this is
/bin/keystore_cli_v2, another utility present in the device to generate,
use, and delete keys from the command line. By writing a more complex
Frida script, we actually only need to forge a valid request once, to record
the memory addresses used. We can then alter their content and call
nos_call_application with our new parameters.

3.3 Custom client

Despite these improvements, it is preferable to adopt a different strategy,
allowing us to communicate with the chip in a more linear way, with more

8 https://android.googlesource.com/platform/external/nos/host/generic/+/

refs/heads/android11-release/libnos_transport/transport.c#452

https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/android11-release/libnos_transport/transport.c#452
https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/android11-release/libnos_transport/transport.c#452

M. Rossi Bellom, D. Melotti, P. Teuwen 15

efficient and automatic interactions. As mentioned, the Android system
exposes the libraries responsible for communicating with Titan M, which
are normally used by citadeld. What we can do, however, is writing a
custom client that directly connects to the driver, bypassing the citadel
daemon. Such a tool, which we called nosclient, is a binary compiled
with the Android Native Development Kit (NDK), and allows to send fully
customized messages to the secure module. It does not require any special
configuration on the device, apart from root privileges to open the driver
and stop citadeld, as only one process can be communicating with the
driver at the same time.

This client is the main tool we used during this research. Leveraging
on the open source Protobuf definitions, it allows us to generate any type
of command and analyze the response returned by the library functions.
nosclient can be launched in an Android shell as a command-line script.
Directly from its arguments, it can invoke a command defined with proto-
buf. We also implemented custom commands to create proofs of concept
or to exploit vulnerabilities (as explained in Section 5.2).

4 Hardware reversing

Fig. 3. Titan M on the PCB of a Google Pixel 3

The tools we presented enabled us to widely investigate the chip’s
interaction with the Android system dynamically. There is, however, a
last limitation that is still in place. Both the Frida tracer and the custom
client require the device to be fully booted to work. While this is generally
not a serious problem, there are some interesting commands sent to the
Titan M while the device is in bootloader mode. These are impossible to

16 2021: A Titan M Odyssey

trace from the Android perspective, therefore we needed to focus on the
hardware level and physically tamper with the SPI bus.

Fig. 4. Titan M contacts and underfill epoxy

The quickest way would be to find tracks on the PCB where the SPI
bus is apparent, then cut tracks and take control of it. Unfortunately, the
PCB is very dense and composed of many buried layers so it is not that
simple.

Physically, the Titan M is in a 3.6 × 3.6 mm Ball Grid Array (BGA)
package featuring 64 contacts on 13 mm2, as shown in Figures 3 and 4.

Once the chip got desoldered, we probed the PCB contacts and other
points of the PCB with a continuity tester to reconstruct the pinout, but
besides ground, power rails, phone buttons and the debug UART (already
accessible via debug pads), we could not find much. Then we experimented
with a cheap Vector Network Analyzer (VNA) and a needle, to see roughly
if there is a PCB track behind each BGA connector or not. If there is a
track, it acts a bit like an antenna and we can observe some changes in the
reflection coefficient (S11) at high frequencies. The results are integrated
in Figure 5 which was completed in the next step. White cells mean we
believe there is no corresponding track, yellow ones correspond to the
detection of a high impedance (or capacitance) on the corresponding pad,
revealing the presence of a track (but of unknown functionality). This step
helped prioritizing our reverse engineering efforts on the promising pads.

As we did not get quite the information we were seeking, we attempted
to design a 10-layer flexible PCB to slip between the Titan M and the PCB
and get access to the signals, but the production price was prohibitive
and the results uncertain. Therefore we moved to the radical (some will
say crazy) approach of rewiring the chip manually with tiny wires, using a

M. Rossi Bellom, D. Melotti, P. Teuwen 17

Fig. 5. Partially reversed pinout of the Titan M

Thin Quad Flat Package (TQFP) breakout board as intermediate support,
as shown in Figures 6 and 7. Just in case, we wired all the 64 connections.

Fig. 6. Titan M wired on a TQFP-64 breakout board

We powered the phone and. . . were relieved when it booted successfully.
This setup allowed to probe easily all the lines with an oscilloscope while
the phone was booting and running. We could identify among other things
the SPI bus, shown in green on Figure 5. The SPI bus is clocked by the
CPU at 1.2 MHz except during the bootloader phase when it’s clocked at
2.4 MHz.

The next step was to sniff the SPI bus during different operations.
The example in Listing 2 shows some commands exchanges between the

18 2021: A Titan M Odyssey

Fig. 7. Breakout board wired back to the PCB

bootloader of the main CPU and the Titan M, after the SPI rescue feature
is used. Indeed, this feature also erases all the user data and secret from
the chip. So the booloader of the main CPU has to initialize it by sending,
among others, the Root of Trust through the command setRootOfTrust.

$ LD_PRELOAD =./ libparser .so python \

parse_sigrok -csv.py reboot_after_spi_rescue .csv

...

AVB: GetLock

{

IN

{

lock: BOOT

}

OUT {}

}

Keymaster : SetRootOfTrust

{

IN

{

digest :

"4 bf5122f344554c53bde2ebb8cd2b7e3

d1600ad631c385a5d7cce23c7785459a "

}

OUT {}

}

Keymaster : SetBootState

{

IN

{

is_unlocked : true

public_key :

" 00000000000000000000000000000000

00000000000000000000000000000000 "

M. Rossi Bellom, D. Melotti, P. Teuwen 19

color : BOOT_UNVERIFIED_ORANGE

system_version : 163840

system_security_level : 10568

boot_hash :

"00 dfccb48f331975a1390d5133ce5321

e65123bc1f1f76b6ffb9deb61f5d6be8 "

}

OUT {}

}

...

Listing 2. Trace of data sent by the bootloader during initialization phase

Using a logic analyzer we can trace the data going on the SPI bus, and
extract them into a csv file containing the SPI packets. We made a simple
python script to parse this file in order to rebuild the different commands.
Then, using the protobuf definitions available, we made a parser library
whose role is to print in a human readable way the content of the different
commands.

Fig. 8. 4PDT switch to swap SPI Controllers

20 2021: A Titan M Odyssey

To be able to take control of the Titan M over the SPI bus, one
must connect the Titan M to another SPI controller. We chose to use
a Raspberry Pi which offers SPI functionality on its pins header. The
Titan M I/O works at 1.8 V while the Raspberry Pi SPI operates at 3.3 V,
therefore we introduced a level shifter in charge of the voltage conversion
across the SPI bus lines and a 1.8 V voltage regulator as no such voltage
source is directly accessible from the pinout. We cannot have two SPI
controllers wired to the same peripheral, therefore we introduce a 12-pin
4-pole double throw toggle (4PDT) on-on switch shown in Figure 8 to
choose which controller to connect to the Titan M: the Pixel 3 CPU or
our Raspberry Pi. We also connect the debug UART to the Raspberry
Pi to get a setup able to exploit the first vulnerability described in the
next section. To reduce the risk of bad signals over our hectic wiring, we
operate the SPI at a slower speed (300 kHz).

5 Vulnerabilities and Exploits

In this section, we present the vulnerabilities we found on the Titan M.
We disclosed all of them to Google, following the community guidelines.
The full disclosure timeline will be published in the coming month in
Quarkslab’s blog.9

5.1 Out-of-Bounds Read in Nugget task (CVE-2021-0939)

The first vulnerability we found is an out-of-bounds read that allows an
attacker to leak parts of the memory of the chip. The vulnerability is
present in the Nugget task, in the portion of the code that handles the
command UART passthrough.

void nugget_ap_uart_passthru (uint index)

{

[...]

if (PASSTHRU != index)

cprint (4," passthru %s" ,(& string_array)[index]);

[...]

Listing 3. Out-of-bounds read vulnerability

9 https://blog.quarkslab.com/

https://blog.quarkslab.com/

M. Rossi Bellom, D. Melotti, P. Teuwen 21

This command takes a byte value as input, which is then used as an
index in a string array to print a message on the UART console. The
string array contains five strings, but the index value can be up to 255.

char ** string_array = {

0x65c00 , // -> "off"

0x65c04 , // -> "usb"

0x65c08 , // -> "ap"

0x65c0b , // -> "ssc"

0x65c0f , // -> " citadel "

// end of the array

0x4004002c ,

0x0

[...]

Listing 4. Reachable memory

As a consequence, an attacker can use an index value greater than 5, so
that the system prints a string placed on one of the addresses following the
string array. By choosing a value carefully, it can be used to leak critical
data from the memory of the chip. We wrote a script that prints all the
reachable addresses through this vulnerability. We have been particularly
interested by addresses from 0 and 0x1000, since they correspond to the
memory region where the Boot ROM is. It means that we can use this
vulnerability to leak parts of the Boot ROM.

A first limitation we encountered in our attempts to exploit this
vulnerability was that the vulnerable code requires the main CPU to be
in bootloader mode. And to overcome this limitation, we had to use our
hardware setup described in the Section 4. First we boot the main CPU
in fastboot mode so that it stays in the bootloader mode while waiting for
a user input. Then we switch the SPI controller and use our Raspberry Pi
to send our crafted command.

A second limitation is due to the fact that the system prints a string
on the UART console, and not a byte array. While printing a string buffer,
the system prints all the bytes of the buffer up to the first 0x00 byte
encountered. And because it is ARM code, it is very likely that there will
be some 0x00 bytes in the Boot ROM code. This is why we can only leak
part of the Boot ROM using this vulnerability.

This vulnerability has been assigned as CVE-2021-0939. Google rated
this vulnerability as high and fixed it with the Android security patch
level 2021-01-10 [7].

22 2021: A Titan M Odyssey

5.2 Firmware Downgrade with SPI Rescue (CVE-2021-1043)

The second vulnerability we found is more serious and allows to downgrade
the Titan M firmware. Indeed, while an efused value is taken into account
during the image verification phase at boot (see Section 2.2), it seems that
these values are never changed when there is a new firmware. Therefore,
it is possible to use the SPI rescue feature to downgrade the firmware to
any one of the existing old versions.

We introduced the SPI rescue in Section 2.3. The command, which
can be sent from fastboot mode, overwrites the RW A image, deleting
the other one and the user data stored on the chip. During our research,
we discovered that, providing a rec file containing an image older than
the one in execution, we can successfully downgrade the firmware. We
reversed the format and it does not require any authentication. This is
why a rec file can be easily generated from a firmware file.

This vulnerability has a significant impact, as it allows an attacker to
rollback the Titan M, to a version that can be attacked thanks to a known
vulnerability. The fact that the SPI rescue deletes the secrets stored on
the chip mitigates the consequences of such an attack, which, however,
remain important. Google rated this vulnerability as high, and should
fix it with security patch level 2021-01-11 [6]. CVE-2021-1043 has been
assigned.

Exploiting a Known Vulnerability We apply the aforementioned
attack strategy to exploit a known vulnerability. This way, we explore how
to mount an exploit against Titan M, a task that lets us interact with the
protections in place and test their effectiveness.

Vulnerabilities in Android are reported on a monthly basis in the
Android Security bulletin [11]. Very few of them involve Titan M and
the related CVEs lack details. Automatic binary diffing, with tools like
bindiff [28], is certainly an option, which, nonetheless, can be ineffective
when we do not have a defined area to focus on. In any case, once a
potential vulnerability is found, it remains non-trivial to understand if it
is reachable by a maliciously crafted command or whether it can indeed
lead to code execution.

After considering different ones, we investigate a vulnerability present
in the firmware version 0.0.3/brick_v0.0.8232-b1e3ea340, released on
December 2020. Fixed in the March 2021 bulletin [15], this vulnerability
could correspond to either CVE-2021-0454, CVE-2021-0455 or CVE-2021-
0456: all of them have the same description, thus we cannot specify which
one we are referring to.

M. Rossi Bellom, D. Melotti, P. Teuwen 23

The vulnerability is in the handler of the ICpushReaderCert command
from the Identity task. The associated request includes a byte array and
a series of 4-byte values corresponding to offsets and sizes of components
of the byte array, as shown in Listing 5.

After decoding the request, the firmware parses the x509Cert buffer,
retrieving its sections according to the specified offsets and sizes. Such
fragments are then copied in a structure (which we call ic_struct) located
in a global memory area, outside of the Identity task. This operation
(performed using memcpy) is done without any check on the size of the
source buffer. As a result, since we can control both the content of the
buffer and its size, an overflow is possible on the global structure.

message ICpushReaderCertRequest {

bytes x509Cert = 1;

uint32 tbsCertificateOffset = 2;

uint32 tbsCertificateSize = 3;

uint32 signatureOffset = 4;

uint32 signatureSize = 5;

uint32 publicKeyOffset = 6;

uint32 publicKeySize = 7;

uint32 signAlg = 8;

}

Listing 5. The Protobuf definition of the targeted request

Since ic_struct is not allocated on the stack of the vulnerable function,
we cannot hijack execution by simply overwriting the saved return address
pushed to the stack. Nonetheless, right after the structure, we can find some
runtime information related to the management of the commands: among
them, the address of the functions used to handle the communication on
the SPI bus, and the list of callbacks associated with each command.

The exploitation strategy is therefore the following. First, we send an
ICpushReaderCert command to overflow ic_struct and overwrite the
callback related to the first SPI command (GetState from the AVB task).
We can do this by simply crafting a message with a large x509Cert. Then,
we send an empty AVB GetState request, which triggers the callback
we have just overwritten. Note that we do not need to include the stack
canary in our payload, as the structure is allocated in a shared memory
area and not on the stack of a task.

As for the “new” callback value, we can write the address of an existing
function in the firmware. This is a practical solution to show a proof of
concept for a successful exploitation, but such an attack is not particularly

24 2021: A Titan M Odyssey

powerful. Instead, we can place there the first gadget of a Return Oriented
Programming (ROP) chain, which allows to execute different fragments of
code on the firmware [26].

To mount this type of attack, however, we have to control the stack of
the AVB task (that is the context in which our attack is executed), where
to place our sequence of gadgets. This is achieved by first calculating the
expected stack pointer: since we know its initial value, we only need to
traverse how the functions of the task manipulate it before jumping to the
overwritten pointer. Once we calculated this value, we can include it in
our ICpushReaderCert command, at an offset where it overwrites another
pointer close to ic_struct: the address of the buffer where the Nugget
requests received from the SPI are stored. This way, we can add a call to
a Nugget command to our exploitation strategy, sending our ROP-chain,
which will be copied to the overwritten address. Thanks to this, when we
finally send the AVB GetState command, the stack already contains the
sequence of gadgets composing our attack. Figure 9 graphically reports
how we exploit the buffer overflow.

. . .

nugget_recv_buf

AVB GetState
AVB Load

. . .

vulnerable
memcpy

AVB $sp

First gadget

ic_struct

Nugget
SPI data

Command
handlers

Fig. 9. The memory area interested by the ICpushReaderCert vulnerability.

At this point, we successfully achieve code execution on Titan M. With
this approach, we obtain control of the instruction pointer in the context
of a task, therefore in thread mode. By mounting a slightly different
attack, we can also overwrite a different pointer and gain code execution

M. Rossi Bellom, D. Melotti, P. Teuwen 25

in handler mode. This is the first known code execution exploit on the
chip.

An exploit using the ROP technique is classified as a code reuse attack,
since it relies on instructions that are already present on the target. By
crafting some calls to the logging functions in the firmware, we create an
exploit that leaks any value in memory accessible with read permission.
This is a very useful primitive, as it enables memory inspection at runtime,
which can provide insights also while studying other vulnerabilities (as
we show in Section 6). In particular, we can successfully extract the Boot
ROM, thus discovering the only component not available statically. Also,
the vulnerability could have been exploited to read values from the SFS
region: in the case of Keymaster, this means breaking StrongBox. In our
case, this consequence is not present, since when we downgrade the device
using the SPI rescue feature, we also delete all the secrets.

The main limitation of this attack, in our case, derives from the
simplicity of the firmware. In fact, there is no “special” function that
would allow us to get full control over the target. In other words, we
cannot craft a call to execve or system to obtain a shell on the Titan M,
because the OS does not support it. To achieve a similar result, instead,
we have to write our own shell code, i.e. inject a sequence of instructions
written by us and execute them.

The key challenge of this second approach is finding a memory area
which is both writable and executable. In practice, no such region ex-
ists by default: as explained in Section 2.4, the MPU makes the RAM
non-executable, writing on the current flash region is not allowed and
tampering with the other one would imply failing the signature check
that occurs before starting the image. Bypassing the MPU, by disabling
or reconfiguring it, does not seem to produce successful results, and we
suspect that an additional security protection may be configured with
the other mechanism to define memory regions that we described in the
Section 2.4.

We modified our nosclient (see Section 3.3) to implement the PoC
that exploits the vulnerability. We used it to create a leak command
which allows to leak arbritrary data from the chip memory. We found
that command quite useful to inspect the chip memory, such as the SFS
where the Root of Trust lies, or the Boot ROM of the chip, which is quite
interesting to understand the first stage of the boot process.

./ nosclient leak 0x0 0x10

00 00 02 00 99 14 00 00 b9 3e 00 00 b9 3e 00 00 b9 3e

26 2021: A Titan M Odyssey

Listing 6. Example of nosclient usage to leak 16 bytes from address 0

6 Fuzzing

To automate vulnerability research, we explore how to use fuzzing on the
Titan M. Fuzz testing is based on generating random inputs and feeding
them to the target program, monitoring its behavior and checking whether
the processing yielded a crash or an unexpected result [27].

Fuzzing is particularly powerful when we can instrument our target,
either at compile time or at binary level. This improves the ability to
find bugs, detecting them even if they do not lead to a crash. Even more
importantly, it generates coverage, which can be used by the fuzzer to
produce highly diversified inputs that exercise different portions of the
program’s state space.

Instrumentation, at any level, is not possible on the Titan M firmware,
which is a good example of a black-box target. Also known as an oracle,
a black-box target offers no detailed feedback during its execution, but
returns a signal that we can use to determine whether an input was
processed successfully.

Since we have an accurate view over the format of the messages, we
can design a fuzzer based on a grammar, represented by the Protobuf
definition of the commands. With such an approach, the fuzzer does not
evolve the corpus based on the coverage generated on the target (which
we do not have), but rather mutates it using some operators, randomly
selected and applied while respecting the Protobuf model. These mutations
are applied with the objective of triggering typical input management
vulnerabilities, e.g. integer overflows.

To implement this solution, we start again with the nosclient. We
remark that this native binary allows to send arbitrary messages to the
chip, by directly communicating with the system driver. After sending
a command, it retrieves a return code sent by Titan M, together with
the actual body of the response. Thanks to the experiments conducted
while exploiting the known vulnerability, we know that when a memory
corruption vulnerability is triggered, the command returns an error code
equal to 2 and reboots. We can find the definition of these error codes in a

M. Rossi Bellom, D. Melotti, P. Teuwen 27

header file in the AOSP, where 2 corresponds to APP_ERROR_INTERNAL.10

This represents our signal to retrieve the result of a command: general-
izing, when the return code is greater than 1, the input is worth further
investigation.

As a mutator, we use libprotobuf_mutator, an open-source library
that allows to randomly mutate Protobuf variables [5]. The most important
function of the library is Mutate, which takes as arguments a Protobuf
type and a size, and adds, deletes or mutates its fields while respecting
the specified size. Integrating it into our tool is fairly simple, as we only
need to continuously pick a message, apply the mutation, send it to the
chip and evaluate the result. Figure 10 illustrates our fuzzing architecture.

Choose message m

m
′ = Mutate(m)

s = Serialize(m′)

Send s via
/dev/citadel0

Process
message

c > 1?

Save corpus

Triage fuzzing input

nosclient

Titan M

Return code c

yes

no

Fig. 10. The fuzzer workflow.

10 https://android.googlesource.com/platform/external/nos/host/generic/+/

refs/heads/android11-release/nugget/include/application.h

https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/android11-release/nugget/include/application.h
https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/android11-release/nugget/include/application.h

28 2021: A Titan M Odyssey

To implement our approach, we start by mutating requests of the
tasks that communicate on the SPI using Protobuf. As mentioned, they
are four in total: AVB, Keymaster, Identity, and Weaver. We decide to
focus on the last three and exclude the first, since many AVB commands
can only be sent in bootloader mode (to perform secure boot) and return
application-specific error codes.

We run a first fuzzing campaign targeting the firmware version
0.0.3/brick_v0.0.8232-b1e3ea340, the same as the one with the vulnera-
bility we exploited in Section 5.2. Table 1 reports the results.

Table 1. Fuzzing results of the firmware version 0.0.3/brick_v0.0.8232-b1e3ea340

Task Command Bug Detection Return code

Identity ICPushReaderCert Buffer overflow Chip reboots 2
Identity ICsetAuthToken Buffer overflow Stack canary 2
Identity WICaddAccessControlProfile Null-ptr deref. Chip halts 4
Identity WICbeginAddEntry Null-ptr deref. Chip halts 4
Identity WICfinishAddingEntries Null-ptr deref. Chip halts 4
Identity ICstartRetrieveEntryValue Null-ptr deref. Chip halts 4

Keymaster FinishAttestKey N/A Chip reboots 2
Keymaster IdentityFinishAttestKey N/A Chip reboots 2

The ICPushReaderCert vulnerability has been successfully found by
our fuzzer, proving its effectiveness. In addition, we find several other cases
of inputs causing unexpected behavior from the chip. ICsetAuthToken

contains a stack-based buffer overflow, that is detected thanks to the
canary check. Four different command handlers instead generate a null-
pointer dereference: in particular, the firmware retrieves a function pointer
from a structure, initialized with null bytes and not yet filled, and executes
it. This is a good use case for the read primitive built upon the previous
vulnerability, to inspect this memory area and verify this assumption. On
Titan M, though, a null address is actually valid and corresponds to the
Boot ROM. This behavior is clearly unintended and causes a call to a
function in the Boot ROM, which makes the chip halt. After triggering
this vulnerability, the chip becomes unresponsive to the UART console
and keeps returning error code 4, even to valid commands. The only way it
can be restored is via a reset function exported by libnos_datagram, or
a reboot of the phone. Finally, two Keymaster commands cause a simple
reboot: while this is probably not normal, we did not scope down any
further, since these functions have been patched in the latest version.

M. Rossi Bellom, D. Melotti, P. Teuwen 29

These results allow us to validate the tool we developed and demon-
strate the potential of the approach. Consequently, we run a second fuzzing
campaign, this time targeting the latest version of the firmware at the
time of writing (0.0.3/brick_v0.0.8292-b3875afe2), released in June 2021.
Table 2 summarizes the results.

Table 2. Fuzzing results of the firmware version 0.0.3/brick_v0.0.8292-b3875afe2

Task Command Bug Detection Return code

Identity WICfinishAddingEntries Null-ptr deref. Chip halts 4
Identity ICstartRetrieveEntryValue Null-ptr deref. Chip halts 4

As we can see from the table, the latest version of the firmware contains
two vulnerable commands, with the same underlying function performing
a null-pointer dereference that results in a call to a Boot ROM function.
The vulnerability has been disclosed to Google, but it was not considered
serious enough to be included in the monthly bulletin. However, Google
informed us that they will likely address the null-pointer-derefs issue in a
future update as a code hygiene fix.

All the bugs have been consistently found by the fuzzer after few
seconds of processing, with a throughput of approximately 75 messages
per second. This is certainly a positive result and it suggests that the
approach is promising. On the other hand, after quickly finding these
crashes, the fuzzer does not encounter any further issue, even with hours
of execution. The reason is probably a well-known limitation of black-box
fuzzers, that is exploring only shallow states. Without any visibility over
which code branches are taken by the inputs, the fuzzer may be only
exercising the surface of the firmware.

These are some improvements that can be implemented to improve
the fuzzer’s coverage, while remaining in a black-box setting. First, we can
start by checking the actual response returned by the commands, not only
the return code. If a new response is received from a command, a new
code branch has been exercised. In parallel, another option is exploring
the UART output, following the same principle. To do this, though, we
would have to change our fuzzing architecture, including another machine
connected to the UART interface of Titan M (we cannot achieve this only
with the Google Pixel device). Inevitably, this would impact the fuzzer
throughput.

30 2021: A Titan M Odyssey

Despite promising, all these solutions eventually encounter a major
limitation of fuzzers in general, that is testing stateful targets with complex
relations between messages. For example, many Keymaster commands
include a KeyBlob or an OperationHandle field, which has to be already
initialized not to be discarded. Once we identify these relations (by revers-
ing the firmware), we can create a corpus of valid messages and instruct the
mutator not to alter certain fields. This is another possible improvement,
although at some point we have a trade-off between the resources spent
on reverse engineering and a more accurate fuzzer.

A completely different way to approach the problem is using emula-
tion. After having succeeded in extracting the missing components of the
firmware, we can emulate its execution, to both explore the internals and
fuzz it. In this case, we would be in a grey-box configuration, in which we
have full visibility over code coverage. Emulation is a very hot topic in
embedded devices research; however, Titan M frequently interacts with
hardware components (such as the random number generator, the crypto-
graphic accelerator, etc.), and this represents an important challenge to be
addressed by an emulation-based solution. To tackle it, a hybrid solution
is to emulate only specific parts of the firmware, to simply investigate
their execution or fuzz them.

7 Conclusion

This study offered a glimpse of the Titan M internals and usages in
Android. Having access to the firmware file, to the sources of EC and
some other tools in AOSP really helped the reverse engineering task and
allowed us to work out some of the mysteries behind this chip.

On the hardware side, we have been able to guess a large part of the
pinout of the chip and to identify the most important buses, in particular
the SPI bus. This allowed us to sniff and send commands at any time
in the lifecycle of the chip, even when the main CPU is in bootloader
mode. All this was done with low-cost hardware tools and handmade
microsoldering. This was possible thanks to the architecture choice behind
the Titan M chip: it is external to the main SoC and the buses used to
communicate with the main SoC are exposed on the phone’s PCB. Such
analysis would have been different if the security chip were part of the
main SoC, like SEP, the security chip by Apple. We expected, however,
that our research can be applicable to Titan M2, the next security chip
by Google released in November 2021 with the Pixel 6, since it is still a
discrete chip that communicates with the main CPU through the SPI bus.

M. Rossi Bellom, D. Melotti, P. Teuwen 31

In addition, we discovered two important 0-day vulnerabilities, show-
ing that mistakes still happen on such a security chip. One of these
vulnerabilities allowed us to downgrade the firmware and exploit a known
vulnerability, which made possible to produce the first code execution
proof of concept on the Titan M and lead us to leak the Boot ROM of the
chip. We tried to push the vulnerability research forward by producing
a black-box fuzzer which permitted to discover new issues, despite the
limitations of the black-box approach.

All vulnerabilities we found had been reported to Google and are now
fixed. We released the different tools and proofs of concepts we made for
our research here: https://github.com/quarkslab/titanm.

References

1. Cortex-M3 Devices Generic User Guide. https://developer.arm.

com/documentation/dui0552/a/the-cortex-m3-processor/programmers-

model/processor-mode-and-privilege-levels-for-software-execution.

2. Cortex-M3 Devices Generic User Guide. https://developer.arm.com/

documentation/dui0552/a/cortex-m3-peripherals/optional-memory-

protection-unit/.

3. Frida – A world-class dynamic instrumentation framework. https://www.frida.

re/.

4. Ghidra – software reverse engineering framework. https://github.com/

NationalSecurityAgency/ghidra.

5. libprotobuf-mutator. https://github.com/google/libprotobuf-mutator.

6. Pixel Update Bulletin—November 2021. https://source.android.com/security/

bulletin/pixel/2021-11-01.

7. Pixel Update Bulletin—October 2021. https://source.android.com/security/

bulletin/pixel/2021-10-01.

8. Secure Enclave overview. https://support.apple.com/en-gb/guide/security/

sec59b0b31ff/web.

9. ARM Security Technology Building a Secure System using TrustZone Technology.
Arm white paper, page 108, 2009.

10. AOSP. A/B (Seamless) System Updates | Android Open Source Project. https:

//source.android.com/devices/tech/ota/ab.

11. AOSP. Android Security Bulletins. https://source.android.com/security/

bulletin.

12. AOSP. CTS Test for Secure Element. https://source.android.com/

compatibility/cts/secure-element.

13. AOSP. Gatekeeper. https://source.android.com/security/authentication/

gatekeeper.

14. AOSP. Hardware-backed Keystore. https://source.android.com/security/

keystore.

15. AOSP. Pixel Update Bulletin—March 2021. https://source.android.com/

security/bulletin/pixel/2021-03-01, 2021.

https://github.com/quarkslab/titanm
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/processor-mode-and-privilege-levels-for-software-execution
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/processor-mode-and-privilege-levels-for-software-execution
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/processor-mode-and-privilege-levels-for-software-execution
https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit/
https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit/
https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit/
https://www.frida.re/
https://www.frida.re/
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://github.com/google/libprotobuf-mutator
https://source.android.com/security/bulletin/pixel/2021-11-01
https://source.android.com/security/bulletin/pixel/2021-11-01
https://source.android.com/security/bulletin/pixel/2021-10-01
https://source.android.com/security/bulletin/pixel/2021-10-01
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web
https://source.android.com/devices/tech/ota/ab
https://source.android.com/devices/tech/ota/ab
https://source.android.com/security/bulletin
https://source.android.com/security/bulletin
https://source.android.com/compatibility/cts/secure-element
https://source.android.com/compatibility/cts/secure-element
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://source.android.com/security/bulletin/pixel/2021-03-01
https://source.android.com/security/bulletin/pixel/2021-03-01

32 2021: A Titan M Odyssey

16. Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), pages 361–372,
Minneapolis, MN, USA, June 2014. IEEE.

17. Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre Attacks: Exploiting Speculative Execution. arXiv:1801.01203 [cs], January
2018. arXiv: 1801.01203.

18. Ben Lapid and Avishai Wool. Cache-Attacks on the ARM TrustZone Implementa-
tions of AES-256 and AES-256-GCM via GPU-Based Analysis. In Carlos Cid and
Michael J. Jacobson Jr., editors, Selected Areas in Cryptography – SAC 2018, Lec-
ture Notes in Computer Science, pages 235–256, Cham, 2019. Springer International
Publishing.

19. Jessica Lin. Expanding the Android Security Rewards Program. https://security.

googleblog.com/2019/11/expanding-android-security-rewards.html, Novem-
ber 2019.

20. Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown. arXiv:1801.01207 [cs], January 2018. arXiv: 1801.01207.

21. René Mayrhofer. Android security trade-offs 1: Root access. https://www.

mayrhofer.eu.org/post/android-tradeoffs-1-rooting/, May 2019.
22. René Mayrhofer, Vishwath Mohan, and Stephan Sigg. Adversary Models for Mobile

Device Authentication. arXiv:2009.10150 [cs], September 2020. arXiv: 2009.10150.
23. René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich. The

Android Platform Security Model. arXiv:1904.05572 [cs], December 2020. arXiv:
1904.05572.

24. Nagendra Modadugu and Bill Richardson. Building a Titan: Better security through
a tiny chip. https://web.archive.org/web/20211024063652/https://security.

googleblog.com/2018/10/building-titan-better-security-through.html,
October 2018.

25. Maxime Peterlin, Joffrey Guilbon, and Alexandre Adamski. Breaking
Samsung’s ARM TrustZone. https://www.blackhat.com/us-19/briefings/

schedule/#breaking-samsungs-arm-trustzone-14932, August 2019.
26. Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-

Oriented Programming: Systems, Languages, and Applications. ACM Transactions
on Information and System Security, 15(1):2:1–2:34, March 2012.

27. Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. The Fuzzing Book. CISPA Helmholtz Center for Information Security, 2021.
Retrieved 2021-03-12 11:41:11+01:00.

28. Zynamics. BinDiff. https://www.zynamics.com/bindiff.html.

https://security.googleblog.com/2019/11/expanding-android-security-rewards.html
https://security.googleblog.com/2019/11/expanding-android-security-rewards.html
https://www.mayrhofer.eu.org/post/android-tradeoffs-1-rooting/
https://www.mayrhofer.eu.org/post/android-tradeoffs-1-rooting/
https://web.archive.org/web/20211024063652/https://security.googleblog.com/2018/10/building-titan-better-security-through.html
https://web.archive.org/web/20211024063652/https://security.googleblog.com/2018/10/building-titan-better-security-through.html
https://www.blackhat.com/us-19/briefings/schedule/#breaking-samsungs-arm-trustzone-14932
https://www.blackhat.com/us-19/briefings/schedule/#breaking-samsungs-arm-trustzone-14932
https://www.zynamics.com/bindiff.html

	2021: A Titan M Odyssey

